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Abstract

Heightened demand for alternatives to human exposure to strenuous and repetitive labour, as
well as to hazardous environments, has led to an increased interest in real-world deployment of
robotic agents. Targeted applications require robots to be adept at synthesising complex
motions rapidly across a wide range of tasks and environments. To this end, this thesis
proposes leveraging abstractions of the problem at hand to ease and speed up the solving. We
formalise abstractions to hint relevant robotic behaviour to a family of planning problems, and
integrate them tightly into the motion synthesis process to make real-world deployment in
complex environments practical. We investigate three principal challenges of this proposition.

Firstly, we argue that behavioural samples in form of trajectories are of particular interest to
guide robotic motion synthesis. We formalise a framework with behavioural semantic annotation
that enables the storage and bootstrap of sets of problem-relevant trajectories.

Secondly, in the core of this thesis, we study strategies to exploit behavioural samples in task
instantiations that differ significantly from those stored in the framework. We present two
novel strategies to efficiently leverage offline-computed problem behavioural samples: (i) online
modulation based on geometry-tuned potential fields, and (ii) experience-guided exploration
based on trajectory segmentation and malleability.

Thirdly, we demonstrate that behavioural hints can be extracted on-the-fly to tackle highly-
constrained, ever-changing complex problems, from which there is no prior knowledge. We
propose a multi-layer planner that first solves a simplified version of the problem at hand, to
then inform the search for a solution in the constrained space.

Our contributions on efficient motion synthesis via behaviour guidance augment the robots’
capabilities to deal with more complex planning problems, and do so more effectively than
related approaches in the literature by computing better quality paths in lower response time.
We demonstrate our contributions, in both laboratory experiments and field trials, on a
spectrum of planning problems and robotic platforms ranging from high-dimensional
humanoids and robotic arms with a focus on autonomous manipulation in resembling
environments, to high-dimensional kinematic motion planning with a focus on autonomous safe
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navigation in unknown environments. While this thesis was motivated by challenges on motion
synthesis, we have explored the applicability of our findings on disparate robotic fields, such as
grasp and task planning. We have made some of our contributions open-source hoping they
will be of use to the robotics community at large.
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Introduction

“Thinking drives behaviors. Behaviors drive action. Action drives results...”

— Jamie Flinchbaugh

Autonomous robotic systems have been long envisioned as the alternative to human exposure
to strenuous and repetitive labour, as well as to hazardous environments. The last decades have
witnessed notable progress towards such prospect, aiding humans in complex and routinary
tasks as, for example, autonomous exploration of remote and inaccessible underwater [88] and
space [26] environments, high-precision surgical assistance [76], search and rescue in disaster
response [38] and, among many other breakthroughs, management of a variety of household
chores [154], and more comfortable, efficient and safer transportation of people and goods [12].

A fundamental requirement to push the potential of robotics even further is the development of
more autonomous, resilient, and effective planning algorithms [1]. Planning in robotics Planning in

robotics
tackles

the challenge of determining sequences of valid goals and actions that lead a robot, or a group of,
to succeed in an assigned mission [52]. This is a complex problem that comprises multiple levels
of analysis, e.g., mission, task and motion planning, and it is tightly linked to other ongoing
robotic challenges, chiefly world perception and understanding, and system state estimation
and control. This thesis focuses on the motion planning problem (also interchangeably referred
to as motion synthesis throughout this manuscript), without losing sight of its connection and
codependency to other essential robotic functionalities in the autonomy pipeline.

1.1 Context

In its most generic definition, motion planning Motion
planning

seeks a collision-free, feasible and continuous
trajectory from a robot (start) state to another (goal state) [95]. Such a challenge is typically
addressed with motion synthesis policies, commonly referred to as motion planners, which
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4 BEHAVIOUR-DRIVEN MOTION SYNTHESIS

process observations of the world to calculate feasible robotic actions in the form of trajectories
subject to a set of given problem specifications (see Figure 1.1). AllPlanning

space
elements that constitute

the planning problem are represented in a particular, or combination of, planning spaces (e.g.,
work, configuration, state, control, belief) such that the planners can search for constraint
complying trajectories. We elaborate on the discussion about planning spaces in Section 2.1.

Figure 1.1: Motion synthesis aims to compute a trajectory that allows a robot to conduct a task
in a particular scene. The elements (robot, task, scene) define the motion planning problem.

IdeallyAlgorithmic
properties

, a motion planner should always find a trajectory when a solution exists (algorithmic
completeness), with the best possible cost (algorithmic optimality) subject to a desired
objective (e.g., length, time, smoothness, human-likeness), in no time (algorithmic efficiency),
and regardless of the planning problem (algorithmic scalability). See Section 2.1 for an
extended discussion. In practice, however, solving the underlying motion planning problem is
generally complex, and it gets harder with the dimensionality of the robotic system, the
constraints imposed by the task, the complexity of the environment, and the necessary
algorithmic properties. Many robotic applications are exposed to all these challenges, thus
highlighting the need for efficient strategies for robotic motion synthesis.

The robotics literature is extremely rich in frameworks, algorithms, and techniques for motion
synthesis. Each approach offers different algorithmic properties, thus each being particularly
suitable to cope with a specific type of motion synthesis problem; a universal approach to
motion synthesis that performs flawlessly regardless of the planning problem, i.e., robot, task
and scene, remains an idealised conception. Generally, we can distinguish two main algorithmic
trends to motion synthesis: exploratory and exploitative. We overview some of the methods
under these two strategies below, but delve into their review and discussion in Chapter 2.

Motion synthesis methods of exploratoryExploratory
search

nature undertake search routines to discover the
connectivity of the space, aiming to find a continuous sequence of collision-free motions that
lead to a trajectory from start to goal. Traditionally, such exploratory search is conducted
from, scratchPlan from

scratch
, i.e., without guidance over the entire planning space. In settings of reduced

complexity and dimensionality, an option is to tackle the problem analytically, such as with
potential fields [83, 84] or its randomized path planner (RPP) [14, 15] variant. Another family
of algorithms search for solutions on a discretised version of the space, e.g., Dijkstra’s [41],
A* [56], D* [155, 156], or R* [102]. Their discrete support is usually built following inherently
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rigid structures, such as grids or lattices, which do not always scale well to more complex
settings. Alternatively, sampling-based algorithms sample the space randomly to build a
connected graph of configurations. Seminal algorithms under this category include the
probabilistic roadmap (PRM) [81], rapidly-exploring random tree (RRT) [94] and its
bi-directional variant RRTConnect [91], expansive-spaces tree (EST) [65, 62, 63], and their
corresponding optimal versions. In general, exploratory methods are algorithmically
probabilistic complete, but their underlying exploratory search can be inefficient and lead to
long computation times.

Oppositely, exploitative Exploitative
search

approaches to motion synthesis attempt to leverage some information
related to the underlying problem to efficiently find collision-free trajectories from start to
goal. Useful information can be that of any nature hinting relevant robotic behaviour to a
particular or a family of planning problems Relevant

features
, such as experienced robot invariant constraints in

form of states and motions (e.g., [11, 157, 73, 110]) in standalone, or those correlated with
geometric features of the scene (e.g., [178, 67, 98, 34, 114, 33]) and task information (e.g., [150,
131, 165, 117]). In the literature, such an exploitative approach is particularly attractive to
well-defined planning problems that are repetitive and as such, relevant features can be
computed offline and exploited on deployment. On this line, an option lies in the learning
realm, where a-priori self- or externally-experienced relevant features in resembling problems
are encoded and exploited with learning by demonstration (LbD) [19, 9, 147], reinforcement
learning (RL) [74, 89] or transfer learning (TL) [163] techniques. In a different vein, repairing,
guiding and optimising schemes [176] exploit problem-relevant features, a.k.a., initial seeds or
warm starts, by exploring their vicinity for a solution either with heuristics or analytic
gradients. In cases where the planning problem is not sufficiently well-structured to
pre-compute relevant features, these can be computed on-the-fly, to then pursue similar
exploitative strategies as those named above. Examples of works adopting this online strategy
include, but are not limited to, multi-resolution frameworks that solve the underlying problem
in sequentially informed stages, e.g., kinodynamic planning by interior-exterior cell exploration
(KPIECE) [160] or synergistic combination of layers of planning (SYCLOP) [137, 136], and
hybrid approaches that interleave planning from scratch and exploitative schemes, e.g.,
incremental trajectory optimization for motion planning (ITOMP) [129]. Overall, exploitative
methods are extremely efficient to synthesise motion plans when provided with features that
lie nearby a region where a solution to the underlying problem exists.

Adopting either (exploratory or exploitative) motion synthesis approach has several
implications in terms of design and performance. Exploratory approaches are more versatile as
they exhaustively search for a solution over the entire space. Despite this implying minimal
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design of the planning scheme, on deployment, significant time might be spent exploring
irrelevant areas of the planning space that are unlikely to contribute to a solution. This issue is
notably relevant in complex problems, to the extreme that planning from scratch may become
intractable. Instead, well-framing an exploitative strategy in a particular application can come
with serious performance benefits. Nonetheless, identifying relevant features to a large group
of problem instantiations is not trivial, and formulating an exploitative scheme that allows for
the encoding of problems, such that their representation is widely transferable and
generalisable to other planning queries, remains an open area of ongoing research.

1.2 Problem Statement

Existing approaches to motion synthesis rely on computational techniques that are entirely
exploratory or inherently data-driven. As such, these approaches are brittle and incapable of
efficiently accounting for the variety of complex behaviours necessary for autonomous
planning [119]. Comparing motion synthesis capabilities in robotics with that of animals and
humans reveals significant scope for improvement. From a biomimetic point of viewBiomimetic

motion
synthesis

, animals
and humans are capable of efficiently and safely trace plans in a wide range of environments
and conditions, even when those are entirely novel. In cognitive sciences, one of the theories
behind the efficiency of biomimetic motion synthesis supports that such process is driven by a
vast repertoire of behavioural models which is continually expanded and adjusted over time
and experiences [60, 115, 10, 117]. Hence, adopting such a strategy for robotic motion
synthesis seems to be a promising venture to enhance its current capabilities.

We envision an analogous strategy to that described above to support more efficient and
adaptable robotic motion synthesis. In particular, we foresee behavioural models to pose
planning-specific problems in an abstract space, such that their similarities are accentuated
and thus, problem-relevant features can be transferred and exploited across similar planning
contexts. Therefore, as schematised in Figure 1.2, the concept of behaviour-driven exploitative
motion synthesis comprises the following steps:

ABSTRACTION process that poses the underlying planning problem differently, hereinafter
referred to as abstract problem, to aid on extracting relevant features. The
abstraction should capture the key aspects of the motion planning class the
underlying problem belongs to. An excessively discriminating abstraction
might prevent extracting useful features to successful exploitation.

EXTRACTION process that analyses the abstract problem to compute a set of relevant
features for the exploitation stage. An ideal extraction would allow
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retrieving relevant features that are transferable to multiple instances of a
motion planning class, and do so generically enough to allow
pre-computing and storing the corresponding features in models or look-up
structures, or, at least, allow computing the features rapidly on-the-fly.

EXPLOITATION process that leverages the extracted relevant features to guide the search of a
solution for the underlying problem. An ideal exploitation should cope with
the fact that the provided features might not always be closely related to the
undergoing problem. As thus, a planning scheme that weighs exploration
with exploitation of relevant areas of the planning space is important.

Figure 1.2: Conceptual idea of motion synthesis via abstractions. Alternatively to planning
trajectories from scratch, an abstraction of the underlying problem and its corresponding solution
can be leveraged to compute motion plans. The hypothesis on such an approach is for it to enable
solving more complex problems, and do so more efficiently, than planning from scratch methods.

With the idea described above, we aim at driving the motion synthesis with behavioural
inductive bias, i.e., with hints on the expected robotic behaviour on a given planning problem,
to avoid exhaustive exploration of the potentially infinite behavioural possibilities. Instead,
computational efforts are focused on promising areas of the planning space. Overall, the
feasibility of undertaking such a behaviour-driven motion synthesis approach at large depends
on the ability to obtain, identify and exploit relevant behavioural features for a given planning
problem. In this regard, we raise the following research questions:

RQ1 How might relevant features be identified, stored, and retrieved for recurrent tasks?

RQ2 How should relevant features be leveraged in favour of efficient motion synthesis?

RQ3 How might planning via abstractions help solving ever-changing planning problems?
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1.3 Thesis Objectives, Contributions and Outline

In this thesis, we contribute strategies suitable for rapid and scalable motion planning in a
variety of fields. We argue that grounding robotic motion synthesis on adaptive behaviours may
offer an exciting opportunity to trade-off algorithmic efficiency and versatility to address a wide
range of motion planning problems. Our particular approach, as schematised in Figure 1.3, is
twofold: first, hypothesise the sort of behaviour that addresses a designated planning problem,
to then drive the motion synthesis via abstraction to infer behaviour-relevant motions.

Figure 1.3: Planning scheme to guide the motion synthesis process through categorically related
parts of the system’s behavioural space. The task manager employs a relational database to
decide whether any of the known planning via abstraction pipelines relates to the designated
task, or it is better off planning from scratch. Different behaviour-driven planners are
proposed according to the possibility to extract relevant features prior to deployment.

We employ the planning scheme in Figure 1.3 to address the research questions posed above
along with several contributions. While the contributing approaches to each research question
share the research line of behaviour-driven motion synthesis, their technical development does
not necessarily build onto each other. In order to contextualise and better understand the real
impact of our developments, we first provide a comprehensive review and discussion on existing
strategies for motion synthesis in Chapter 2; special emphasis is placed on strategies related
to each research question (see Section 2.3.1, Section 2.3.2 and Section 2.3.3 for RQ1, RQ2,
and RQ3, respectively). Then, based on common limitations identified in the existing motion
planning algorithms, the main contributions of the work presented in this thesis are gathered
and distributed throughout this document as follows:

Part II (addressing RQ1) We introduce a general framework with behavioural semantic
annotation that enables the storage and bootstrap of robot behaviour (see
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Chapter 3). We first discuss the conceptual idea of the framework and its capabilities
(see Chapter 4), and then extend it to include affordances information (see
Chapter 5). We demonstrate the framework using off-the-shelf dynamic movement
primitives (DMPs) to encode and retrieve behavioural abstractions of
high-dimensional kinematic systems in grasping and manipulation tasks, and discuss
our findings in context with the main objective of this thesis (see Chapter 6).

Part III (addressing RQ2) Building on the capability to bootstrap relevant behavioural
abstractions, we present two independent strategies to efficiently leverage
offline-computed problem behavioural abstractions (see Chapter 7). The first
contribution on this line is an online modulation of DMP-encoded behaviours based
on a geometry-tuned potential fields formulation (see Chapter 8). The second
contribution are two the novel experience-driven random trees (ERT) and
ERTConnect planners that leverage from prior abstract solutions (see Chapter 9). We
demonstrate and benchmark our approaches on kinematic manipulation tasks that
differ from the prior problem abstractions at different levels, and discuss our findings
in context with the main objective of this thesis (see Chapter 10).

Part IV (addressing RQ3) We study the applicability scope of behavioural abstractions in a
complex, ever-changing planning problem (see Chapter 11). Our contribution is a multi-
layered planning strategy capable of abstracting and exploiting online robotic behaviour
in a high-dimensional, highly-constrained, and uncertain space (see Chapter 12). We
demonstrate our approach in a navigation task through unknown environments, in
laboratory experiments and in field trials, and discuss our findings in context with the
main objective of this thesis (see Chapter 13).

The contributions on efficient motion synthesis via behaviour guidance along the three core parts
of this thesis are summarised in Table 1.1, altogether with an overview of the robot platforms
used in this thesis and their characterisation for motion synthesis in Table 1.2. Overall, our
contributed behaviour-driven planning strategies augment the robotic capabilities to deal with
more complex planning problems, and do so more effectively than related approaches in the
literature by computing better quality paths in lower response time. A more in-detail summary
of the work in this thesis is provided in Part V, with a review of the technical contributions in
Chapter 14 and an outline of exciting avenues for future work in Chapter 15.

The work on motion synthesis developed in this thesis has contributed to several research lines
in the scope of the ORCA Hub - project on offshore robotics for certification of assets. Also,
several of our contributed motion synthesis algorithms have been made publicly available to the
robotics community (links provided in the corresponding chapters).

https://orcahub.org/
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Abstraction Abstract
problem Extraction Relevant

features Exploitation Deployment and
[Platform (as in Table 1.2)]

Chapter 4 Semantic
task-labelling

Task-related
problem

Kinaesthetic
teaching

Library of
DMPs

User-guided
DMP roll-out

Manipulation, novel scenarios
[iCub]

Chapter 5 Semantic
task-labelling

Task-related
problem

Kinaesthetic
teaching

Library of
affordances

Affordance-guided
DMP roll-out

Grasping and manipulation, novel
scenarios [PR2]

Chapter 8 Projection onto
parameter space

Parametric
descriptor

Feed-forward
grid-search

RC-NN
weights

DMP + RC-NN-based
coupling term roll-out

Manipulation, novel scenarios
[Franka]

Chapter 9 Semantic
task-labelling

Task-related
problem RRTConnect Library of

paths ERT and ERTConnect Manipulation, novel scenarios
[Fetch]

Chapter 12 Projection onto
3D workspace

Problem at
workspace RRT* Geometric

lead path Lead-guided SST Navigation, unknown environments
[SPARUS II and quadrotor]

Table 1.1: Overview of the approaches for motion synthesis via abstractions (as detailed in Figure 1.2) contributed in this thesis. Note that library
in RQ1’s scope (Chapter 4 and Chapter 5) refers to a collection of behavioural samples where each exemplifies a particular task, whereas as part of
RQ2 (Chapter 8 and Chapter 9) it is a set of behavioural samples exemplifying the same task. Computed offline. Computed on-the-fly.

Platform Middleware Planning Group DoF Planning Space Usage
iCub [112] YARP [111] Dual-arm with torso 17 End-effector space (SE(3)) Simulation and real robot

PR2 ROS [139] Single-arm with torso 8 End-effector space (SE(3)) Simulation and real robot
Franka OROCOS [25] Single-arm 7 End-effector space (R3) Simulation and real robot

Fetch [174] ROS [139] Single-arm with torso 8 Configuration space (R8) Simulation and real robot
SPARUS II [32] ROS [139] Mobile base 2 Belief (SE(2)× R3×3) and control (R2) spaces Simulation and real robot
Quadrotor [113] ROS [139] Mobile base 5 Belief (SE(3)× R6×6) and control (R3) spaces Simulation

Table 1.2: Overview of the robot platforms used in this thesis, and their characterisation for motion synthesis.
See Section 2.1 for details on the technical nomenclature.
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Background

“Standing on the shoulders of giants”

— Bernard of Chartres

Although motion synthesis is the central research area behind the work presented throughout this
thesis, the validation of our contributions in real-world scenarios has involved other fields of study
such as perception, mapping, state-estimation, and control. A comprehensive review of the state-
of-the-art of all these areas would prove to be lengthy, diffuse, and unhelpful in contextualising
this thesis’ contributions. Therefore, this chapter mainly focuses on reviewing strategies for
motion synthesis. We start in Section 2.1 with an introduction to the fundamentals of motion
synthesis. Then, in Section 2.2, we review methods that undertake exploratory routines to solve
motion planning problems; the study of these methods is not intended to be in-depth, but to
provide a complete overview across the most common planning strategies in the literature. In
Section 2.3, we visit existing strategies that attempt to inform the motion synthesis process to
bound the exploratory load in relevant regions of the planning space. We conclude in Section 2.4
with a discussion on this thesis’ contributions towards ongoing motion synthesis challenges.

2.1 Motion Synthesis: Fundamentals

All elements that constitute the planning problem are represented in a particular, or combination
of, planning spaces. Motion synthesis, then, aims at finding a collision-free trajectory between
two points on such space. Some common planning spaces are:

• Task space: represents the space in which a robot’s task can be naturally expressed. Only
knowledge on the task is required, not about the robot, to define the task space. For instance,
if the task is to plan for the position of a point robot on a plane, then the task space is R2,

11
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while if the robot was a rigid body, then the task space would be SE(2). Analogously, in a
volumetric environment, the task space would be R3 and SE(3), respectively.

• Workspace: represents the set of two-dimensional (2D) or three-dimensional (3D) positions
that can be reached by a robot. The workspace can also include orientation. The set of
positions reachable with all possible orientations is referred to as the dexterous workspace. In
the literature, the workspace of a manipulator is sometimes called the end-effector space.

• Configuration space: represents the set of all possible configurations that a robot can adopt.
The configuration of a robot is determined by the state of all its DoFs. The configuration space
of a point and solid body robot constrained in a 2D workspace would be R2 and SE(2), whereas
if constrained in a 3D workspace, it would be R3 and SE(3), respectively. In the literature, the
configuration space of a manipulator is also referred to as joint space, which commonly is Rn,
with n being the number of DoFs of the manipulator. When the dimensionality of the robot’s
configuration space is larger than that of the workspace, the robotic system is redundant, as
certain poses in the workspace are reachable with multiple configurations.

• State space: represents the set of all possible states that a robot can adopt at each time
differential either in the work or configuration space. A state completely describes the system
by expanding the robot’s positional knowledge with, for instance, velocity and acceleration.
Planning in the state space is generally challenging as its span is potentially infinite.

• Belief space: represents a particular space (e.g., configuration or state space) in a stochastic
manner. The underlying configurations and states are probabilistic distributions around their
nominal estimate (beliefs), whose covariance accounts for the uncertainty of any element in
the planning problem (e.g., motion model, robot localisation, wind and current perturbances).

• Control space: represents the set of actions (controls) that a robot can kinematically or
dynamically execute from a particular state (e.g., dictates that a car cannot move sideways).

Each space can be divided into two subspaces: the free and occupied. The free space is the set
of feasible configurations, states or beliefs that are not in collision with any obstacle. Contrary,
the occupied space is the region of the space that involves a collision with the environment.

The choice of planning space depends on the considered constraints. Namely, we can distinguish
between geometric and kinodynamic constraints. The former assumes that the robotic system
can move instantaneously in any direction (i.e., kinematics and dynamics are negligible). In that
case, planning in the configuration space suffices to validate configurations against the limits of
each DoF and collisions. The latter type of constraints involves ensuring the feasibility of the
computed motions, for which planning in the state space, altogether with feasible actions from
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the control space, is essential. Additionally, one might consider probabilistic constraints, which
require planning in the belief space and validating collisions against uncertain estimates.

Over a planning space, a planner seeks a collision-free trajectory that solves the motion synthesis
problem. Some of the properties that are of interest in a planner are:

• Efficiency: refers to the ability to retrieve a valid motion plan with a reasonable amount of
time. The tractable amount of time is dependant on the robotic application. Planners with
nice planning and path properties, while offering low computation time, remain a challenge.

• Completeness: refers to the ability to find a solution when one exists. To that, lossless
representations of the planning space and environment are required. However, completeness is
traded off against efficiency. Two weaker notations exist: resolution complete and probabilistic
complete. The former ensures finding a path, if one exists, when the discretisation of the space
is fine enough to capture all relevant information. The latter refers to the increased chances
of finding a solution, if any exists, as the time spent planning tends to infinite.

• Optimality: refers to the ability to retrieve the solution with the best cost (see below for
some discussion on possible metrics). Analogously to the case of completeness, there are two
weaker notations: resolution optimal and asymptotic optimal.

• Scalability: refers to the potential to employ a planner in problems of different complexity
(i.e., 2D against 3D task space, or planar robot against a high-dimensional system), while
maintaining the algorithmic properties and keeping computations tractable.

Independently from the properties of a planner, it might be of interest to compute motions of
certain quality subject to one, or a set of, metrics. We introduce some common metrics next:

• Length: seeks short trajectories. In geometric spaces, optimal length corresponds to
minimum execution time, but that is not necessarily true for kinodynamic spaces.

• Smoothness: seeks to avoid jerky motions to, for instance, preserve mechanically critical
DoF or capture more steadily video stream with a camera.

• Naturalness: seeks human-like motions to maximise the confidence of operators working in
proximity with robots, or the comfort in human-robot teams.

• Clearance: seeks to keep a minimum, or maximise, distance away from the obstacles.
Although computationally expensive, high-clearance solutions reduce the risk of collisions
due to real-world factors unrepresented in the planning space (e.g., uncertainties).

• Safeness: seeks to maximise the robot safety along a path. Arguably, similar aim to that of
the clearance metric, but it can cope with more complex aspects such as uncertainties.
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• Information: seeks a path that maximises information about the environment, thus
promoting trajectories that pass by feature-rich regions of the environment.

There exist two main trends to compute trajectories subject to a desired quality metric. One is
to employ an optimising planner that explores the planning space while improving the solution
cost. While optimising planners are more computationally demanding, an alternative is to
calculate a non-optimised trajectory and post-process it to improve the cost.

2.2 Exploratory Motion Synthesis

The most common strategy for robotic motion synthesis is by planning from scratch, i.e., without
guidance over the entire planning space. Such an approach is characterised by relying on search
routines to discover the connectivity of the space, aiming to find a sequence of motions that lead
to a collision-free trajectory from start to goal. We review relevant exploratory methods below.

An early approach to motion synthesis, particularly to mobile base navigation in unknown 2D
environments, was with a pre-defined set of perception-driven behavioural rules. Bug-based
methods are sensor-based reactive motion planning approaches, in which a robot moves towards
a global goal while avoiding obstacles with limited (local) knowledge of the environment. All
bug-based algorithms build on two basic behaviours: go straight towards the goal and follow
an obstacle’s boundary. Bug-based variants differ in the sensory information used to detect the
obstacles and its usage to switch between the basic behaviours. The Bug1 and Bug2 algorithms
use tactile sensors to detect and contour obstacles until the goal is achieved [107]. The Tangent
Bug leverages a non-zero range sensor to detect obstacles before contact and estimate the optimal
direction to circumnavigate them [77]. These approaches lack completeness guarantees, and their
applicability is limited to low-dimensional problems where optimality is not a must.

When the environment is revealed in advance, potential fields offer a reactive analytical approach
for motion synthesis [83, 84]. Such an approach uses the problem’s structural elements (e.g., goal
configuration and obstacles) to compute potential functions, also referred to as energy functions.
Particularly, the system is guided towards the goal with an attractive energy component, while
it is pushed away from the obstacles with a repulsive energy component. The addition of all
energy landscapes defines the total potential field, the negative vector gradient of which (gradient
descent) is used to guide the robot throughout a collision-free path towards the goal. Potential
fields may suffer from local minima and thus, generally lack algorithmic completeness. The RPP
deals with this situation by using the gradient descent in conjunction with random walks, thus
inserting some stochasticity in the planning process [14, 15]. However, the performance of the
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RPP is highly dependent on parameter tuning and yet, computing the potential fields may be
computationally expensive for dynamic environments or high-dimensional systems.

A widely adopted approach to make complex planning problems tractable is formulating them as
a graph. Utilising graph theory to motion synthesis involves (i) approximating the connectivity
of the space as a graph, and (ii) searching the graph for a collision-free path. Approaches in
this category differ on the graph support type (e.g., roadmaps, grids, lattices, trees), and the
strategy undertaken to build it (e.g., cell decomposition, search-based, sampling-based).

Cell decomposition methods represent the collision-free space by a set of non-overlapping, non-
uniform cells. Decomposition techniques mainly differ in the usage of obstacle information to
compute the cells, e.g., visibility graphs [106], generalised Voronoi diagrams (GVD) [50], freeway
net [24] and, among many others, silhouette [93]. The computed decomposition serves as an
adjacency graph, where cells correspond to nodes and their adjacency to edges. Such topological
graph contains information about all possible routes across the environment, also referred to as a
roadmap. Formally, a roadmap defines a subset of the planning space resulting from the union of
one-dimensional curves, in which any start and goal configuration contained in the collision-free
space can be connected by a path that meets the following requirements: (i) accessibility: there is
a path from the start configuration to some (accessing) node in the roadmap (ii) departability:
there is a path from some (departing) node in the roadmap to the goal configuration, and
(iii) connectivity: there is a path connecting the roadmap’s accessing and departing nodes.
Therefore, in the context of cell decomposition techniques, a path is found by (i) determining
the cells containing the start and goal configurations, and (ii) searching a path within the
roadmap with graph search techniques, such as Dijkstra’s [41] or A* [56] algorithms. Solving
the graph is computationally inexpensive, but the main burden on employing cell decomposition
for motion synthesis resides in the complexity of the decomposition itself.

Search-based methods employ adjacency information to approximate the planning space on
a discrete support. In its simplest form, the planning space is represented as a uniformly
discretised grid. The resolution of the grid implies a trade-off between computational expenses
and space representation accuracy; while coarse discretisations permit faster searches but may
fail to find paths across narrow passages, finer discretisations may allow solving more complex
scenarios at the cost of longer computation times. Hence, search-based methods are resolution
complete. Heuristics are employed to promote reaching the goal configuration before visiting
or unfolding the entire grid. These heuristics typically come with strong theoretical guarantees
on completeness and sub-optimality bounds [132], and stipulate the main differentiating aspect
between search-based variants. Dijkstra’s algorithm [41] and the A* [56] are suitable for low-
dimensional problems dealing with static environments, the anytime repairing A* (ARA*) [101]
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gives the best plan it can within the allowed time budget, the dynamic A* (D*) [155, 156] and
D* Lite [90] deal with dynamic environments, and hybrid planners combine a range of features
to cover a broader range of problems, such as the anytime dynamic A* (AD*) [100] or the
R* [102]. More elaborated search-based strategies employ a lattice to define the adjacency of
robot states and the allowed movement between them [135]. As discussed in Section 2.3.1, the
allowed lattice adjacency induces some domain knowledge about the planning problem in the
form of motion primitives. As thus, lattice graphs, in contrast to grid graphs, enable dealing
with planning problems of higher dimensionality.

Sampling-based algorithms explore the connectivity of the planning space via sampling, thus
not requiring its explicit representation as previous methods. Sampling-based techniques build
graphs following a twofold procedure: (i) “sample” to randomly generate collision-free
configurations, and (ii) “connect” to establish routes between the sampled configurations. This
strategy is adopted in (a) multi-query planners, which build a roadmap that can respond to
multiple motion synthesis problems, e.g., PRM [80] or its asymptotic optimal version
PRM* [79], and in (b) single-query planners, which build a tree-like graph of configurations to
solve a particular start-to-goal query, e.g., RRT [94, 96, 97], its asymptotic optimal RRT* [78]
or bi-directional RRTConnect [91] versions. Sampling-based algorithms are probabilistic
complete, i.e., when granted enough amount of time, they provide a solution if one exists [80,
13], and have an inherent Voronoi bias that promotes dispersion during the exploration [94].
There are many variants of these algorithms. Search tree with resolution independent density
estimation (STRIDE) [53] analyses the most convenient tree expansion to prioritise
less-explored regions (e.g., narrow passages). EST [65, 62, 63] adopts a branch-off strategy to
expand a tree to avoid dependence on a notion of distance; distance metrics are not trivial in
certain planning spaces. Some extensions tackle the lack of optimality of the basic
sampling-based methods which often find solutions with unpredictable length and superfluous
movements. The transition-based RRT (T-RRT) [71] and its optimal version T-RRT* [40]
calculate low-cost paths that follow a costmap established over the planning space. Other
variants, such as the Lazy PRM [20, 21], propose deferring the collision-check along edges until
a path is needed, thus speeding up the exploration. Overall, the properties and modularity of
sampling-based problems make them suitable to tackle a wide range of planning problems.

2.3 Exploitative Motion Synthesis

Exploitative approaches are particularly attractive to recurring motion synthesis problems. As
such, problem information can be extracted offline, and leveraged to aid in solving related
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queries. Such an approach involves some challenges, namely: acquiring, storing and retrieving
problem-relevant features (see Section 2.3.1), and exploiting those in favour of rapid motion
synthesis (see Section 2.3.2). Whereas for repetitive applications each challenge can be addressed
independently, tackling them simultaneously opens up the possibility to deal with complex
problems from which relevant information cannot be extracted in advance (see Section 2.3.3).

2.3.1 Feature Acquisition, Storage and Retrieval

In the autonomy pipeline, motion synthesis aids in enabling a robot to conduct a task in a
particular scene. Any knowledge on the conforming elements of such a problem can be leveraged
to inform the motion synthesis process. Examples of relevant problem information include, but
are not limited to, experienced robot invariant constraints in form of states and motions in
standalone (e.g., [11, 157, 73, 110]), or those correlated with geometric features of the scene
(e.g., [178, 67, 98, 34, 114, 33]) and task information (e.g., [150, 131, 165, 117]).

There are different means to provide prior knowledge to a robotic system. The most
conventional approach is via mathematical models describing the system’s desired
behaviour [54, 175]. Formalising a model to describe motion is generally complex, thus it is
mostly restricted to defining low-level motion primitives. Nonetheless, these primitives within
RL [74, 89] allow a robotic agent to self-learn more sophisticated planning policies via mental
rehearsal or real-world interaction. The planners reviewed in Section 2.2 can also be used
offline to collect samples and trajectories in similar motion planning problems. Instead of
computing features from scratch, an option is to acquire them from an already experienced
agent; TL [163] enables robot-to-robot information sharing, and LbD [19, 9, 147] for a human
to demonstrate behaviour to a robot. The main challenge of these approaches is dealing with
the possibly different anatomical constitution between agents [116].

Acquired features can be stored in a database in a raw format. Nonetheless, such an approach
can rapidly lead to a prohibitive memory footprint when considering multiple features, and
doing so for a variety of environments and tasks. There is a series of techniques that attempt
to mitigate the storage burden, e.g., homotopy classification [18, 138], inference models [99] and
sparse roadmaps [37, 118], among others. The strategy undertaken to encode and store the
acquired data has a large impact on the required generalisation capabilities of the exploitative
method when dealing with problem instantiations not reflected with features in the database.

Retrieving features from a database relevant to a given planning problem poses a challenge itself.
An option is to exploit them exhaustively within a search-based or sampling-based scheme,
thus restricting the exploratory nature of these algorithms onto a discrete support [54, 175].
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This approach, however, may turn prohibitively expensive with databases constituted of an
extensive set of behavioural samples. In this regard, a seminal work is the so-called “manoeuvre
automata”, a set of rules that generates complex behaviours by selection and concatenation
of motion primitives [43]. More sophisticated problem-encoded information requires heuristics
and metrics that aid in identifying the best candidate, or set of, to a particular problem. For
instance, similarity metrics are widely used when dealing with database of trajectories (e.g., [11,
157, 73, 110]) or environmental information (e.g., [34, 33]). Another remarkable approach is the
usage of relational databases to relate tasks with relevant features, e.g., [150, 131, 165, 117].

2.3.2 Feature Exploitation

Strategies to leverage relevant problem information for robotic motion synthesis have mainly
built on learning, control and pure planning techniques. Generally, we distinguish two main
trends: methods that exploit priors via modifying schemes (see Section 2.3.2.1) and guiding
methods that exploit raw priors as reference (see Section 2.3.2.2).

2.3.2.1 Modifying Methods

A major area of research focuses on learning policies that capture the underlying objective of a
given set of task demonstrations. Learning-based approaches for motion synthesis include
iterative learning control (ILC) [22], RL [74, 89], TL [163] and LbD [19, 9, 147]. Among them
all, LbD is closely relevant to this thesis. LbD aims at extracting relevant features from a
demonstrated trajectory, or set of, such that the learnt policy can generalise to multiple task
instances. Some mathematical supports to policy learning are Gaussian mixture model
(GMM) [39], Gaussian mixture regression (GMR), Gaussian process regression (GPR) [144],
DMP [70, 68], hidden Markov model (HMM) [141], locally weighted regression (LWR) [36],
receptive field weighted regression (RFWR) [149] and locally weighted projection regression
(LWPR) [169]. These methods are capable of computing plans quickly, but they struggle
generalising to complex environments that involve significantly different task instances than
those observed a priori [147]. Some authors have explored extending the generalisation
capabilities of these methods with the concept of energy landscapes revised earlier in
Section 2.2. To that, demonstrations are encoded as a LbD policy (primary model), whose
underlying motion synthesis behaviour is modulated with an energy function (secondary
model) based on proprioception and environmental feedback, e.g., online adjustment of force
setpoints [48, 162], workspace and kinematic limits [48, 49], and obstacle avoidance [130, 61,
82, 142, 143, 66]. The generalisation scope of these methods is constrained by the capabilities
of each model and their mutual interaction. Overall, learning methods confer rapid prior
exploitation capabilities, but at the cost of low algorithmic scalability and completeness.
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On the idea of following the gradient of an analytical function, we find optimisation-based
algorithms. These formulate the motion planning problem as an iterative optimisation process
subject to one or several cost functions. A cost function expresses specific requirements
concerning the presence of obstacles, workspace and configuration limits, path smoothness,
dynamical stability (for humanoid robots), and among many others, object manipulability (for
manipulators). Regardless of the cost function definition, optimisation-based algorithms
mainly differ in their use of derivative and environment encoding. Covariant Hamiltonian
optimisation for motion planning (CHOMP) [146] and its extension to handle constraints [42],
trajectory optimisation (TrajOpt) [151], Riemannian motion optimisation (RieMO) [145] and
k-order Markov optimisation (KOMO) [167] optimise a derivable problem encoding via
gradient-descent optimisation. Approximate inference control (AICO) formulates a
probabilistic trajectory model and uses iterative approximate inference to solve the non-linear
stochastic optimal control problem [166]. Similarly to RL techniques, stochastic trajectory
optimisation motion planning (STOMP) [75] and path integral policy improvement (PI2) [164]
formalise the motion planning problem as a stochastic, derivative-free Monte Carlo problem.
In a similar vein, elastic bands model an initial seed (trajectory) as a chain of virtual springs
acting in contraction to a set of via points and repulsion to the presence of obstacles [140]. To
find the equilibrium point between the contraction and repulsion forces applied on the elastic
band, this method iterates using a downhill gradient search. This approach was later extended
to elastic strips, which uses the same concept of springs but with control points [23, 92], and to
establish the edges between the nodes of a manipulation roadmap [177].

2.3.2.2 Guiding Methods

There are mainly two orthogonal strategies to guide the motion synthesis process with relevant
information about the planning problem: repairing a previously experienced space connectivity,
and biasing the sampling into task-relevant areas.

At its core, repairing techniques aim at improving the connectivity of the space, either to
optimise the connectivity cost or to reestablish connections between states that are no longer
valid due to changes in the space. Basic techniques seek to improve a given trajectory
considering new connections between existing vertices (path pruning) or states along the edges
(path shortcutting) [16, 51, 58, 64]. These methods are generally fast, but their limited search
makes them better purposed as a post-processing step to path optimisation. More advanced
techniques invoke a planner locally to reestablish or optimise the connectivity between two
states. Lightning [17] initially retrieves a unique trajectory from a library based on the
start-goal proximity of a trajectory and the current query, as well as votes on the number of
disconnected segments. Then, the repair step employs the RRTConnect to attempt to
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re-connect the end-points of segments originated by variant constraints, e.g., obstacles.
Alternatively, experiences can be jointly stored as a graph [134, 37]. Experience Graphs [134]
build a roadmap of experiences to then search it or explore other routes according to some
heuristics. Thunder [37] creates a sparse roadmap from all experiences. The roadmap is
iteratively queried via the graph-based planner A∗ until a valid path is found. If the graph
does not contain a valid path, candidate paths, if any, are considered for repairing. The
repairing invokes RRTConnect to reconnect the disconnected states along the candidate paths.

Biasing the sampling involves guiding the exploration towards task-relevant regions of the
planning space. A common approach is to leverage from geometric features of the workspace
to guide the sampling in the planning space, e.g., [178, 67, 98, 34, 114, 33]. In [178],
reinforcement learning is used to adapt the sampling in the configuration space by extracting
features in the workspace. The authors of [67] employ a conditional variational autoencoder
that generates samples lying in relevant areas. On the same line, a database that maps
workspace decomposition to local samplers is proposed in [34, 33]. Strategies that bias the
sampling can significantly speed up queries, but they rely on identifying familiar workspace
features to infer relevant samples in the configuration space. Therefore, their applicability is
mainly limited to task instances that resemble those observed a priori, leading to a lack of
generalisation to new environments.

2.3.3 Interleaved Feature Acquisition and Exploitation

There are planning problems that are not sufficiently well-structured to pre-compute relevant
features in advance, or that lack metrics to choose a proper candidate from a database of
problem-relevant features. As such, the exploitative approaches reviewed until this point are
commonly used for systems that are mostly destined to live in a known static environment or to
solve a well-defined problem repeatedly [170]. An alternative is to simultaneously compute and
exploit relevant features on-the-fly. Notably, such an approach reduces the dependence on good
quality data, as well as it removes the need of storage and retrieval of pre-computed information.
Such strategy in the literature is commonly adopted to deal with motion synthesis problems that
are intractable with traditional planning from scratch strategies, and do so more efficiently.

An interesting approach is the ITOMP algorithm, which interleaves planning and optimisation;
the planner is given a fixed time budget to find a solution, which is then used as a warm-start for
the optimiser [129]. Similarly, multi-layered planning frameworks seek a lead to guide (warm-
start) the search of following stages [152]. In [137, 136], the authors introduced a synergistic
two-layered planner: the high-level planner uses discrete search to initially determine those
candidate regions (from a decomposed representation of the environment), which might contain
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part of the final solution; a low-level planner employs a sampling-based motion planner to find a
solution; the interface between layers updates the candidate regions according to the considered
constraints. However, the proposed combination of planners does not guarantee asymptotic
optimality, and the discrete planner becomes slow for high dimensional problems. Palmieri,
Koenig, and Arras presented the Theta*-RRT scheme, which first uses the Theta* path planner
to compute a lead path, which is then employed to bias the search of the RRT planner [128].
This approach, however, lacks asymptotic optimality guarantees given that the second planner is
an RRT. More recently, a multi-layered approach based on the RRT* as a lead planner and the
SST as the final planner has been proposed in [168]. The final planner’s search space is strictly
constrained around the lead path, raising concerns about the completeness guarantees of the
overall architecture. Another family of motion synthesis planners seek to optimise on-the-fly
the sampling and local connection of configurations. To that, the search space is bounded with
environment-related information (e.g., deformable RRT (DRRT) [57], Dancing PRM* [86], and
Volumetric Tree* [85]), and problem-related heuristics (e.g., Informed RRT* [45] and adaptively
informed trees (AIT*) [158]). Some of these approaches have been extended to reuse batches of
samples across iterations that fall within the search limits, e.g., batch informed trees (BIT*) [46,
44] and regionally accelerated BIT (RABIT*) [35].

2.4 Discussion

In this review, we have categorised the rich repertoire of existing frameworks, algorithms, and
techniques for motion synthesis into two main trends: exploratory and exploitative. We have
discussed the algorithmic properties that different methods in the literature confer, and their
suitability to cope with certain types of planning problems. Yet, despite the numerous
approaches to motion synthesis that exist, current methods struggle to satisfy the motion
planning demands of emerging robotic applications. Examples of ongoing challenges include,
but are not limited to: high-dimensional spaces, kinodynamic constraints, unstructured,
dynamic and unknown environments, human-robot and robot-robot teams, and real-time
applications. These challenges require more efficient strategies for robotic motion synthesis
that enable dealing with more complex problems in tractable time.

In this thesis, we contribute strategies suitable for rapid and scalable motion planning in a
variety of fields. Our particular approach is to ground robotic motion synthesis on adaptive
behavioural abstractions in the form of trajectories. Research on that proposition leads to
several technical contributions on: feature acquisition, storage and retrieval (see Part II), feature
exploitation (see Part III), and interleaved feature acquisition and exploitation (see Part IV).
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These developments are build on the basis of their associated limitations (see Section 2.3.1,
Section 2.3.2, and Section 2.3.3, respectively).

Our contributions on efficient motion synthesis via behaviour guidance augment the robots’
capabilities to deal with more complex planning problems, and do so more effectively than
related approaches in the literature by computing better quality paths in lower response time.
We demonstrate our contributions, in both laboratory experiments and field trials, on a
spectrum of planning problems and robotic platforms ranging from high-dimensional
humanoids and robotic arms with a focus on autonomous manipulation in resembling
environments, to high-dimensional kinematic motion planning with a focus on autonomous safe
navigation in unknown environments.



Part II

BOOTSTRAPPING
PROBLEM-RELEVANT ROBOTIC

BEHAVIOUR
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Critical Review - Opening

In this part of the thesis, we focus on the challenge of acquiring, storing and recalling abstractions
with the purpose of bootstrapping robotic behaviour. Enabling a robot with such abilities is
essential to leverage abstractions in favour of rapid computation of motion plans in varied task
contexts. Thus, our aim is to formalise a strategy that enables a robotic system to acquire and
store abstractions, and exploit them to autonomously bootstrap problem-related behaviours.

3.1 Objectives and Contribution

Expectations on fully autonomous robots are for them to be adept at tackling a wide range of
tasks, such as doing the dishes, walking the dog, or, among others, tidying up. Instinctively, each
of these tasks can be inherently associated with a particular behaviour or skill. In this thesis,
we argue that such intuition can be leveraged to induce some bias in the motion synthesis
process. In order to enable a robot bootstrapping problem-relevant behaviour, we need the
ability to identify, encode, and recall abstractions subject to different tasks. To these objectives,
we incrementally present the contributing framework to bootstrap robotic behaviour as:

Chapter 4 A strategy to bootstrap problem-relevant robotic behaviour in support of the motion
synthesis process. The proposed framework employs a relational database to relate
planning problems, particularly assigned tasks, with relevant robotic behaviour.
Behavioural abstractions are formalised as trajectories or trajectory-derived policies.
Moreover, we experiment with the concatenation of multiple abstractions to compose
more complex behaviours that are not intrinsically represented in the framework.

Chapter 5 An extension of the proposed framework that promotes robot autonomy by
interpreting high-level task commands. To that aim, we leverage parallel research
to this thesis on robot affordances to formalise a more sophisticated relational
database that considers properties of the environment, task and target object to
decide the best behavioural abstraction. Moreover, we propose a fast-forward
evaluation mechanism to rank the suitability of multiple behavioural samples.

25
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3.2 Methodology

A relational database is as structure that encompasses a collection of data items with pre-
defined relationships between them. In this part of the thesis, we exploit the structure offered
by relational databases to relate planning problems with suitable robotic behaviours. An initial
iteration in this direction was conceptual as a viability test of employing relational databases to
bootstrap robotic behaviour (see Chapter 4). In particular, we explored look-up structures to
associate the definition of a task in the planning problem with a relevant behavioural abstraction.
We elaborated on such initial proof-of-concept work to formalise more sophisticated relational
databases that consider multiple aspects of the given planning problem (see Chapter 5). In
particular, we leverage from findings in parallel research to this thesis on robotic affordances [8,
6] to contextualise, in a relational model, the designated task objectives with the target objects’
affordances, and infer the most suitable robot behaviour in accordance with the expected effect.

Robotic behaviour can be encoded onto different supports (see Chapter 2). Our proposed
framework captures behaviour associated with particular tasks in the form of trajectories. This
is, we formalise problem abstractions that extract and leverage motion plans in a task-related
(abstract) problem to efficiently drive robotic behaviour in new instances. Trajectories are of
particular interest to us because they can be easily obtained with, for instance, human
demonstrations, existing planning approaches, large-scale motion capture datasets, or widely
available online video footage (e.g., from YouTube); across this thesis, we employ the former
two approaches (human demonstrations in Chapter 4, Chapter 5 and Chapter 8, existing
planning approaches in Chapter 9 and Chapter 12). Moreover, as the outcome of a motion
synthesis problem is trajectories, these can be incorporated into the robot’s behavioural
knowledge about a task as it experiences new instances.

There is a set of challenges associated with the usage of trajectories as behavioural support,
namely, defining suitable metrics for look-up across behaviours and within each one, transfer
across planning problems, and the trade-off between storage capacity and generalisation
capabilities. The framework presented in this part of the thesis addresses the former challenge
of identifying a trajectory, or a set of, for a particular task. Contributions on the challenge of
generalisable behaviour to reduce the storage footprint are described in Part III and Part IV.
Nevertheless, in the development of our framework, we employ off-the-shelf machine learning
tools to mitigate the challenges of encoding behaviour and storage needs, and to be able to
demonstrate the applicability of our work on real-world problems. In particular, we employed
dynamic movement primitives (DMPs) [70, 68] to encode trajectories and retrieve behavioural
abstractions as tractable kinematic models. An overview of DMPs is provided in Chapter 4,
and an in-detail technical discussion in Chapter 8.
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An advantage of using relational databases for problem-relevant behavioural look-up is the
ability to roughly discern whether the framework contains any suitable initialisation for the given
task. For example, in Chapter 4, where a particular behaviour is abstracted as one DMP (or
trajectory), the relational database provides a one-to-one task-DMP relation. Thus, it is trivial
to identify when no relevant abstraction is available. In Chapter 5, we considered behavioural
abstractions resulting in multiple possible outcomes, either for the existence of multiple goals,
e.g., many possible grasping points, or for the availability of multiple samples of the same
behaviour, e.g., a library of DMPs, or a library of raw trajectories. We proposed a fast-forward
self-assessment strategy to rank the suitability of the behavioural samples. In either work,
when no relevant abstraction is available, an option is to plan from scratch (as schematised in
Figure 1.3) to prevent the local minima induced by the exploitation of an unsuitable behavioural
initialisation. Alternatively, if multi-threading is an option, the most n suitable behavioural
samples could be exploited, altogether with a mixture of exploratory and exploitative approaches.
We adopt and further discuss such an idea in Chapter 9.
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Learning and Composing Primitive Skills for
Dual-arm Manipulation

In this chapter, we introduce the concept of a library of motions to bootstrap robotic behaviour.
We leverage human expertise in conducting daily tasks to supply the library with relevant
experiences. In particular, we use kinaesthetic teaching to guide the robot through the tasks,
and encode the observed motions as dynamic movement primitives (DMPs) (also referred to
as primitive skills). Novel task instances are solved by generalising and fusing primitive skills
observed a priori. The proposed concept of a library of experiences is evaluated on the iCub
humanoid robot and several synthetic experiments, by conducting a dual-arm pick-and-place
task of a parcel in the presence of point-mass obstacles. Results suggest the suitability of the
method to bootstrap robotic behaviour from a library of motions.

All proposed work is described in detail in the following published conference paper:

Title: “Learning and Composing Primitive Skills for Dual-arm Manipulation”
Authors: Èric Pairet, Paola Ardón, Michael Mistry, and Yvan Petillot
Conference: Annual Conference Towards Autonomous Robotic Systems
Pages: 65–77, Published: 2019
DOI: 10.1007/978-3-030-23807-0_6

Note: Advanced Robotics at Queen Mary (ARQ) best paper award
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Abstract. In an attempt to confer robots with complex manipulation
capabilities, dual-arm anthropomorphic systems have become an impor-
tant research topic in the robotics community. Most approaches in the
literature rely upon a great understanding of the dynamics underlying
the system’s behaviour and yet offer limited autonomous generalisation
capabilities. To address these limitations, this work proposes a modelisa-
tion for dual-arm manipulators based on dynamic movement primitives
laying in two orthogonal spaces. The modularity and learning capabili-
ties of this model are leveraged to formulate a novel end-to-end learning-
based framework which (i) learns a library of primitive skills from human
demonstrations, and (ii) composes such knowledge simultaneously and
sequentially to confront novel scenarios. The feasibility of the proposal is
evaluated by teaching the iCub humanoid the basic skills to succeed on
simulated dual-arm pick-and-place tasks. The results suggest the learn-
ing and generalisation capabilities of the proposed framework extend to
autonomously conduct undemonstrated dual-arm manipulation tasks.

Keywords: Learning from demonstration · Humanoid robots ·
Model learning for control · Dual arm manipulation ·
Autonomous agents

1 Introduction

Complex manipulation tasks can be achieved by endowing anthropomorphic
robots with dual-arm manipulation capabilities. Bi-manual arrangements extend
the systems competences to efficiently perform tasks involving large objects or
assembling multi-component elements without external assistance. These sys-
tems not only deal with the challenges of single-arm manipulators, such as tra-
jectory planning and environmental interaction, but also require an accurate
synchronisation between arms to avoid breaking or exposing the handled object
to stress.

Traditional approaches have addressed the aforementioned challenges by
means of control and planning-based methods [18]. These methods depend upon
c⃝ Springer Nature Switzerland AG 2019
K. Althoefer et al. (Eds.): TAROS 2019, LNAI 11649, pp. 65–77, 2019.
https://doi.org/10.1007/978-3-030-23807-0_6
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Fig. 1. iCub humanoid learning to contour an obstacle through kinaesthetic guiding
(left), and composing multiple skills to conduct a dual-arm pick-and-place task (right).

an excellent understanding of the exact model underlying the system’s and task’s
dynamics, which are commonly approximated to make the calculations compu-
tationally tractable [13]. On top of that, some of these methods lack scalability
and generalisation capabilities, involving hand-defining all possible scenarios and
actions [3,5]. All these issues have motivated the use of more natural techniques
for robot programming, such as (LbD), in which a human movement is recorded
to be later reproduced by a robot.

Despite the encouraging possibilities offered by adopting human knowledge
for robot control, teaching complex systems, such as dual-arm manipulators,
to respond and adapt to a broad case of scenarios remains an open challenge.
Particularly, it is expected from a dual-arm system to generalise the provided
demonstrations to confront novel scenarios in (a) the task space to deal with
the changing requirements about trajectory planning and environmental inter-
action, and (b) the relative space to ensure the essential synchronisation between
arms [12]. However, current learning-based architectures in the literature pur-
suing autonomy and robustness against the dynamic and unpredictable real-
world environments are limited to single-arm arrangements [4,15,17]. Contrarily,
learning-based frameworks for dual-arm robots do not generalise to undemon-
strated states, thus being limited to highly controlled scenarios [7,19,21].

This paper presents a novel learning-based framework which endows a dual-
arm system with a real-time and generalisable method for manipulation in
undemonstrated environments (see Fig. 1). The framework models a dual-arm
manipulator with a set of dynamic movement primitives laying in two orthogo-
nal spaces to tackle the task’s requirements separately from the synchronisation
constraints. The modularity of the DMPs is leveraged to (i) create a library
of primitive skills from human demonstrations, and (ii) exploit primitive skills
simultaneously and sequentially to create complex behaviours. The potential of
the proposal is demonstrated in simulation after recording skills with the iCub
humanoid through kinaesthetic guiding. The results suggest the proposal’s suit-
ability to endow a dual-arm robot with the necessary learning and generalisation
capabilities to autonomously address novel manipulation tasks.

Chapter 4: Learning and Composing Primitive Skills for Dual-arm Manipulation 31



Learning and Composing Primitive Skills for Dual-Arm Manipulation 67

2 Dual-Arm System Modelisation

This paper pursues an end-to-end learning-based framework which endows a
dual-arm system with enhanced generalisation capabilities, meets the synchro-
nisation constraints, and is easily programmable by non-robotics-experts. This
work addresses all these requirements by means of learnable and composable
primitive skills represented as dynamic movement primitives (DMPs) [9]. This
section firstly overviews DMPs and its use in the literature. It then introduces
the proposed typology of actions in a dual-arm system, which allows leveraging
the strengths of a DMP-based modelisation in the dual-arm context.

2.1 Dynamic Movement Primitives

DMPs are a versatile tool for modelling and learning complex motions. They
describe the dynamics of a primitive skill as a spring-damper system under the
effect of a virtual external force called coupling term. This coupling term allows
for learning and reproducing any dynamical behaviour, i.e. primitive skill. Impor-
tantly, (a) coupling terms can be learnt from human demonstrations, (b) they
can be efficiently learned and generated, (c) a unique demonstration is already
generalisable, (d) convergence to the goal is guaranteed, and (e) their represen-
tation is translation and time-invariant. Because of all these properties, DMPs
are adapted to constitute the fundamental building blocks of this work. Next
follows an introduction about DMPs and their usage to encode positional and
orientational dynamics, and an overview of some coupling terms in the literature.

Positional Dynamics. Let the positional state of a one-degree of freedom
(DoF) system be defined by its position, linear velocity and acceleration. Then,
the system’s state transition is defined with non-linear differential equations as:

τ ż = αx(βx(gx − x) − z) + fx(·), (1)
τ ẋ = z, (2)

where τ is a scaling factor for time, x is the system’s position, z and ż respec-
tively are the scaled velocity and acceleration, αx and βx are constants defining
the positional system’s dynamics, gx is the model’s attractor, and fx(·) is the
coupling term. The coupling term applying at multiple DoFs at once is defined
as fx(·). The system will converge to gx with critically damped dynamics and
null velocity when τ > 0, αx > 0, βx > 0 and βx = αx/4 [9].

Orientational Dynamics. A possible representation of orientations is the unit
quaternion q ∈ R4 = S3 [20]. They encode orientations of a system as a whole,
thus ensuring the stability of the orientational dynamics integration. Let the
current orientational state of a system be defined by its orientation, angular
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velocity and acceleration. Then, the orientational state transition is described
by the following non-linear differential equations:

τ η̇ = αq(βq 2 log(gq ∗q̄) − η) + fq(·), (3)

τ q̇ =
1
2
η ∗q, (4)

where q is the system’s orientation, η and η̇ respectively are the scaled angular
velocity and acceleration, αq and βq are constants defining the system’s dynam-
ics, gq ∈ S3 is the model’s attractor, and fq(·) ∈ R4 is the coupling term. The
operators log(·), ∗, and q̄ denote the logarithm, multiplication and conjugate
operations for quaternions, respectively.

Coupling Terms. Coupling terms describe the system’s behaviour, thus being
useful to learn and retrieve any primitive skill. They are commonly used to
encode the positional [9] and orientational [20] dynamics of a motion. Coupling
terms are modelled in each dimension as a weighted linear combination of non-
linear radial basis functions (RBFs) distributed along the trajectory. Thus, learn-
ing a certain movement relies on finding the weights of the RBFs which closely
reproduce a demonstrated skill.

More complex behaviours may be achieved by exploiting an additional cou-
pling term simultaneously with the motion-encoding one. This approach has
been used to avoid joint limits and constraining the robot’s workspace via repul-
sive forces pushing the system away from these limits [6]. Coupling terms have
also been leveraged for obstacle avoidance with an analytic biologically-inspired
approach describing how humans steer around obstacles [8,17]. Another use is
for environmental and self-interaction purposes by means of a controller tracking
a desired force profile [7]. To the best of the authors’ knowledge, the practice
of using coupling terms simultaneously has been limited to two primitive skills
acting on the same frame or space [15]. Contrarily, this work further exploits the
DMP modularity to describe a dual-arm system in two orthogonal spaces with
the purpose of facing complex scenarios by composing multiple coupling terms.

2.2 Dual-Arm Primitive Skills Taxonomy

Skills for single-arm manipulation have been well analysed in the robotics com-
munity. While some of this knowledge can be extrapolated for a dual-arm manip-
ulator as a whole, their complexity resides in the arms interaction. In the context
of manipulation via a dual-arm system, a possible classification of any primitive
skill falls into two groups: (a) absolute skills, which imply a change of configura-
tion of the manipulated object in the Cartesian or absolute space Sa, e.g. move
or turn an object in a particular manner, and (b) relative skills, which exert an
action on the manipulated object in the object or relative space Sr, e.g. opening
a bottle’s screw cap, or hold a parcel employing force contact.

Each type of primitive skill uniquely produces movement in its space since
they lay in orthogonal spaces such that Sa ⊥ Sr. It is natural to expect from
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a dual-arm system to simultaneously carry out, at least, one absolute and one
relative skill to accomplish a task. Let us analyse the task of moving a bottle to a
particular position while opening its screw cap. Both end-effectors synchronously
move to reach the desired configuration (absolute skill). At the same time, the
left end-effector is constrained to hold the bottle upright (relative skill), while
the right end-effector unscrews the cap (relative skill).

2.3 Dual-Arm DMP-Based Modelisation

Given the variety of primitive skills that a dual-arm system can execute, this
work seeks to model the robotic platform in a generalisable yet modular fashion,
which accounts for both absolute and relative skills. To this aim, let us consider
the closed kinematic chain depicted in Fig. 2 operating in a three-dimensional
(3D) workspace W = R3 × SO(3). Each arm i, where i = {L, R}, interacts with
the same object O. In this context, the absolute skill explains the movement of
the object O in the workspace W = Sa, while the relative skill describes the
actions of each end-effector i in Sr, i.e. with respect to the object’s reference
frame {O}. Note that {O}is the centre of the closed-chain dual-arm system.

The state of the closed-chain dual-arm system in the workspace can be
described by the position/orientation, linear/angular velocities and accelerations
of {O}in Sa. As introduced previously, the system’s state transition is subjected
to its modelled dynamics. Figure 2 illustrates the proposed modelisation of the
system’s dynamics in Sa as a set of DMPs acting between the objects’s frame
{O}and its goal configuration go, which accounts for a desired goal position
gox ∈ R3 and orientation goq ∈ R4. Therefore, three positional DMPs as in (1)–
(2) and one orientational DMP as in (3)–(4) are required to encode the system’s
dynamics in the absolute space Sa = R3 × SO(3).

In the relative space Sr, the dynamics of each end-effector are modelled as
DMPs referenced to the objects’s frame {O}. Since Sr = R3 × SO(3), each end-

Fig. 2. DMP-based modelisation of a closed-chain dual-arm system in the absolute and
relative spaces. This model is extended to deal with rotational dynamics.
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effector dynamic’s in the relative frame is described by three positional DMPs
as in (1)–(2) and one orientational DMP as in (3)–(4).

Any action referenced to the object’s frame can be projected to the end-
effectors using the grasping geometry G of the manipulated object. This allows
computing the required end-effector control commands to achieve a particular
absolute task. A detailed explanation of this transformation can be found in [12].

3 Learning-Based Dual-Arm Manipulation

To endow a dual-arm manipulator with autonomy and robustness in novel
scenarios while being easily programmable and customisable by non-robotics-
experts, this work has decomposed and modelled the system’s dynamics and
synchronisation constraints as primitive skills lying in the system’s absolute and
relative space. Leveraging the formulated modelisation, this work proposes the
framework schematised in Fig. 3 which creates and manages a library of primi-
tive skills. The framework has two components: (i) a learning module that learns
a set of primitive skills from human demonstrations, and (ii) a manager mod-
ule that combines simultaneously and sequentially these primitives to address a
wide range of complex tasks in unfamiliar environments.

3.1 Library Generation

A primitive skill is represented by its coupling term and frame of reference,
i.e. either absolute or relative. Learning coupling terms only requires a human
demonstrator teaching the characteristic skill. As previously introduced, different
coupling terms might be better formulated with different mathematical represen-
tations, e.g. a weighted combination of non-linear RBFs to encode the dynamics
of a task, an analytical obstacle avoidance expression, or among others, a force
profile to control the environmental interaction.

Fig. 3. Scheme of the proposed framework. (a) Learning: a library of primitive skills
is learnt from human demonstrations. Manager: the primitives are combined simulta-
neously and sequentially to confront novel environments. (b) The required primitive
skills are selected according to the affordance elements of the dual-arm task.
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The modularity offered by the proposed DMP-based formulation and its use
in two different spaces tackles the hindrance and ambiguity arising when demon-
strating all features of a dual-arm task in an all-at-once fashion. This means
that instead of learning a task as a whole, the framework harvests a collection
of primitive skills. Creating a repertoire of skills referred to as a library, allows
the demonstrator to teach in a one-at-a-time fashion, i.e. to focus on one fea-
ture of the demonstration at a time [4]. Moreover, this modular library can be
employed for movement recognition purposes, where a demonstrated skill can
be compared against the existing ones in the library. If the observed behaviour
does not match any existing primitive, it is identified as a new skill and can be
added to the framework’s library [10].

3.2 Attaching Semantics

The framework needs additional information to successfully conduct a dual-
arm manipulation task. Let us consider the robotic task of opening a bottle’s
screw cap, where the system needs to select a proper sequence of primitive skills
in order to succeed (see Fig. 3(b)). This is first a grasping, where each end-
effector holds a different component of the bottle, then a synchronous turning
referenced in the system’s relative space and finally, a placing and releasing
primitives. Therefore, in order to ease this action selection, it is essential to
attach a semantic description to each primitive skill.

Semantic labels bridge the gap between the low-level continuous representa-
tion of primitives and the high-level description of actions and their influence
on objects. An approach to tackle the object affordances challenge consists in
combining features from the object and their surroundings to infer on a suitable
grasp-action based on their purpose of use [1,2]. The combination of such ele-
ments builds the relationship between context, actions and effects that provide
a cognitive reasoning of an object affordance.

3.3 Library Management

Each coupling term stored in the framework’s library represents a particular
absolute or relative primitive skill. Reproducing a skill consists in using its cou-
pling term as fx(·) or fq(·) in (1)–(4). This computation retrieves the skill’s
required accelerations, which can be integrated over time to obtain the skill’s
velocities ẏo for an absolute primitive or ẏCi for the end-effector i relative prim-
itive.

The individual retrieval of primitives already accounts for the inner DMP
generalisation capabilities, such as different start and goal configurations, as
well as obstacle locations. However, these primitive skills need to be combined
to generate more complex movements, such as a pick-and-place task of a bot-
tle accounting for the presence of unexpected obstacles (absolute space), while
opening the bottle’s screw cap considering the exerted force (relative space).
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The presented framework addresses this prerequisite by simultaneously combin-
ing different absolute and relative skills as:

[
ẏL

ẏR

]
= GT

J∑

j=1

wj ẏoj +
K∑

k=1

wk

[
ẏCL,k

ẏCR,k

]
, (5)

where ẏi ∈ R6 describes the linear and angular velocity commands of the
i = {L, R}end-effector satisfying the set of activated primitive skills,G ∈ R6×12

is the global grasp map of the two end-effectors grasp matrices as described in
[13], and ẏoj ∈ R6 and ẏCi,k ∈ R6 are the velocities of the j ∈ [1, J ] absolute and
k ∈ [1, K] relative primitive skill stored in the library. Absolute and relative skill
selection is conducted with the weights wj and wk, respectively.

The resulting framework does not only combines skills simultaneously, but
also sequentially. This allows the execution of a complex task composed of a
sequence of primitives. To do so, a primitive skill is executed by initialising it
with the full state (pose, velocities and accelerations) of its predecessor primitive
skill. Such an initialisation avoids abrupt jumps in the system’s state.

4 Results and Evaluation

The proposed framework has been evaluated on the iCub humanoid robot. Par-
ticularly, the real platform has been used to load the framework’s library with a
set of primitive skills learnt from human demonstrations. These skills have been
employed in simulation to conduct dual-arm pick-and-place tasks of a parcel in
novel scenarios, demonstrating the proposal’s potential for humanoid robots.

4.1 Experimental Platform

iCub is an open source humanoid robot with 53 DoFs [11] (see Fig. 4(b)). The
most relevant ones in this work are the three-DoFs on the torso, the two seven-
DoFs arms equipped with a torque sensor on the shoulder, and the two nine-DoFs
anthropomorphic hands with tactile sensors in the fingertips and palm.

iCub operates under YARP. The deployment of the proposed framework on
the iCub platform is schematised in Fig. 4. Mainly, four big functional modules
can be distinguished: (i) the proposed framework described in this paper (blue
blocks), (ii) the real/simulated platform with its visual perception, joint sensors
and actuators (magenta blocks), (iii) the end-effectors control via the built-in
YARP Cartesian controller [16] and an ad-hoc external torso controller (green
blocks), and (iv) the HRI interface to parameterise the desired start and goal
configurations for the task, and retrieve the robot’s status (red blocks).

4.2 Learning Primitive Skills from Demonstration

For the system to succeed on the dual-arm pick-and-place of a parcel task in
novel environments, the framework’s library needs to be loaded with the absolute
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Fig. 4. (a) Layout of the framework deployment on the iCub robot. Note: grasping
geometry (GG), primitive skill (PS). (b) iCub humanoid being taught grasp mainte-
nance through kineasthetic guiding. (Color figure online)

primitive skills of (i) pick-and-place dynamics on a horizontal surface, (ii) rota-
tional motion around the z-axis, and (iii) obstacle avoidance. Moreover, since the
parcel has to be grasped by lateral contact of both end-effectors, the library also
requires a relative skill to ensure grasp maintenance, i.e. prevention of contact
separation. All these primitive skills have been demonstrated via kineasthetic
guiding on the real iCub humanoid robot. To this aim, all joints have been set in
gravity compensation, allowing the demonstrator to physically manoeuvre the
robot through each primitive. Figure 4(b) depicts the kineasthetic teaching of
obstacle avoidance and grasp maintenance primitives.

During the demonstrations, proprioception information is retrieved via
YARP ports to learn the coupling terms fx(·) and fq(·) in (1)–(4) characterising
the different skills. For the pick-and-place and rotational dynamics, the cou-
pling terms are encoded as a weighted linear combination of non-linear RBFs
distributed along the trajectory as in [9]. The obstacle avoidance is learnt by
finding the best-fitting parameters of the biologically-inspired formulation as in
[17]. Finally, the grasp maintenance skill is learnt by setting the parcel’s grasping
geometry as a pose tracking reference as in [7].

4.3 Experiments on Simulated iCub Humanoid

The evaluation of the framework on the pick-and-place setup has been con-
ducted on a simulated iCub robotic platform. Particularly, the four primitive
skills previously learnt and loaded in the framework’s library are simultaneously
and sequentially combined to conduct three consecutive dual-arm pick-and-place
task in novel environments (see Fig. 5).

Given an initial random configuration laying on the table and within iCub’s
workspace (see Fig. 5(a)), the first action consists of grasping the parcel. This
is achieved by retrieving the parcel’s configuration, then use the learnt parcel’s
geometry to compute the grasping points, and finally approach them laterally
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Fig. 5. iCub humanoid succeeding in novel dual-arm pick-and-place tasks by simultane-
ously and sequentially combining primitive skills. Demonstrated pick-and-place (green
trajectory). Framework’s response (blue trajectory). Obstacle (red sphere). (a) Par-
cel initial state. (b)–(c) Grasping parcel laterally. (d)–(f) and (f)–(h) Pick-and-place
execution with different start, goal and obstacle configurations. (Color figure online)

via the middle-setpoints displayed as red and blue prisms for the right and
left end-effector, respectively (see Fig. 5(a)–(c)). From this stage on, the grasp
maintenance skill ensures that both end-effectors are in flat contact with the box
to avoid undesired slippage.

The following three consecutive movements require picking-and-placing the
parcel between different configurations laying on the central, right and left
side of iCub’s workspace. The former pick-and-place does not require avoiding
any obstacle, thus the built-in DMPs generalisation capabilities are sufficient
to address this task (see Fig. 5(c)–(d)). However, the two latter pick-and-place
tasks involve adapting the learnt dynamics to address novel scenarios. When the
obstacle (red sphere) is collinear with the start and goal positions, i.e. below the
demonstrated task (green trajectory), the iCub humanoid circumnavigates the
obstacle from the top (see Fig. 5(d)–(f)). Instead, for an obstacle located forward
the demonstration, the framework guides the system through a collision-free tra-
jectory near iCub’s chest (see Fig. 5(g)–(h)).

The experimental evaluation conducted with the simulated iCub humanoid
robot has demonstrated various of the aforementioned framework’s features.
Having a repertoire of primitive skills available in the framework’s library allows
exploiting them simultaneously and sequentially to confront complex tasks in
novel scenarios. The reported case is one of the 16 successful experiments out
of a total of 20 trials. In all cases, the robot had to accomplish the three con-
secutive dual-arm pick-and-place tasks with different start and goal locations,
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while avoiding novel obstacles and ensuring grasp maintenance. Failure in any of
these tasks made the trial unsuccessful. Interestingly, in the four failed trials one
of iCub’s forearms collided with the obstacle. This is because the biologically-
inspired obstacle avoidance formulation only considers the carried object and
should be extended to the object-arm space. The flexibility of the proposed
framework could be leveraged to integrate in its library a potential field-inspired
approach for obstacle avoidance which also checks for link collisions [14].

5 Final Remarks and Future Work

This work has presented a novel end-to-end learning-based framework which
endows a dual-arm manipulator with real-time and generalisable manipula-
tion capabilities. The framework is built upon the proposed extension of the
DMP-based modelisation for dual-arm systems, which considers two different
frames to reference the movement generation, force interaction and constraints
requirements. Based on this arrangement, the proposed framework is twofold:
(i) learns from human demonstrations to create a library of primitive skills, and
(ii) combines such knowledge simultaneously and sequentially to confront novel
scenarios.

The suitability of the proposed approach has been demonstrated in a dual-
arm pick-and-place setting, where the iCub humanoid first learnt a repertoire of
primitive skills from human demonstrations and then composed such knowledge
to successfully generalise to novel scenarios. The framework is not restricted
to the presented experimental evaluation nor platform. Any system capable of
learning from demonstrations can benefit from this work. Moreover, the frame-
work’s modularity allows loading to its library any primitive skill that might be
required for dual-arm manipulation purposes.

Future work will significantly extend the library of primitive skills such that
more challenging dual-arm manipulation behaviours can be addressed within
the framework. In this regard, imminent efforts will focus on learning force-
dependant primitive skills or other actions requiring complex synchronisation
between end-effectors, such as the opening of a bottle’s screw cap or succeeding
in the peg-in-a-hole tasks.

Acknowledgments. This work has been partially supported by ORCA Hub EPSRC
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Self-Assessment of Grasp Affordance Transfer

In this chapter, we tackle the challenge of end-to-end autonomous robotic manipulation. To that
aim, we leverage the concept of a library of motions within our affordance framework presented
in [8, 6, 7]; robotic affordances allow an autonomous agent to estimate the most suitable grasp
and action, and expected effect subject to a given task. We cross-correlate physical features
on objects, human-demonstrated motions and grasp preferences to harvest an understanding of
affordance relations, and exploit it in novel task instances. As the affordance relations provide
multiple hypothesis on suitable grasp-action pairs, we exploit the rapid roll-out of the DMP-
encoded experiences to forward simulate and evaluate the outcome of executing the affordance
task. The hypotheses are ranked by performance success with a heuristic confidence function
and used to build a library of affordance task experiences. Experimental evaluation shows that
our method exhibits a significant performance improvement against other approaches for end-
to-end manipulation. Experiments on a PR2 robotic platform demonstrate our method’s highly
reliable deployability to conduct real-world manipulation tasks autonomously.

All proposed work is described in detail in the following published conference paper:

Title: “Self-Assessment of Grasp Affordance Transfer”
Authors: Paola Ardón, Èric Pairet, Yvan Petillot, Subramanian Ramamoorthy,

Ronald PA Petrick, and Katrin S Lohan
Conference: IEEE/RSJ International Conference on Intelligent Robots and Systems
Pages: 9385–9392, Published: 2020
DOI: 10.1109/IROS45743.2020.9340841

Multimedia: https://youtu.be/nCCc3_Rk8Ks

Note: First two authors contributed equally to this work (as stated in the publication).
Èric Pairet’s technical contributions on this work were the formulation of the task
affordance library (III.B.) and its self-assessment (III.C. and III.D., partially contributed
with Paola Ardón). Efforts on experimental design, result evaluation and critical analysis,
and manuscript writing were equally distributed between Paola Ardón and Èric Pairet.
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Self-Assessment of Grasp Affordance Transfer

Paola Ardón∗, Èric Pairet∗, Yvan Petillot, Ronald P. A. Petrick,
Subramanian Ramamoorthy, and Katrin S. Lohan

Abstract— Reasoning about object grasp affordances allows
an autonomous agent to estimate the most suitable grasp
to execute a task. While current approaches for estimating
grasp affordances are effective, their prediction is driven by
hypotheses on visual features rather than an indicator of a
proposal’s suitability for an affordance task. Consequently,
these works cannot guarantee any level of performance when
executing a task and, in fact, not even ensure successful
task completion. In this work, we present a pipeline for self-
assessment of grasp affordance transfer (SAGAT) based on
prior experiences. We visually detect a grasp affordance region
to extract multiple grasp affordance configuration candidates.
Using these candidates, we forward simulate the outcome of
executing the affordance task to analyse the relation between
task outcome and grasp candidates. The relations are ranked
by performance success with a heuristic confidence function
and used to build a library of affordance task experiences. The
library is later queried to perform one-shot transfer estimation
of the best grasp configuration on new objects. Experimental
evaluation shows that our method exhibits a significant perfor-
mance improvement up to 11.7% against current state-of-the-
art methods on grasp affordance detection. Experiments on a
PR2 robotic platform demonstrate our method’s highly reliable
deployability to deal with real-world task affordance problems.

I. INTRODUCTION

Affordances have attained new relevance in robotics over
the last decade [1], [2]. Affordance refers to the possibility
of performing different tasks with an object [3]. As an
example, grasping a pair of scissors from the tip affords
the task handing over, but not a cutting task. Analogously,
not all the regions on a mug’s handle comfortably afford
to pour liquid from it. Current grasp affordance solutions
successfully detect the parts of an object that afford different
tasks [4]–[9]. This allows agents to contextualise the grasp
according to the objective task and also, to novel object
instances. Nonetheless, these approaches lack an insight into
the level of suitability that the grasp offers to accomplish the
task. As a consequence, current literature on grasp affordance
cannot guarantee any level of performance when executing
the task and, in fact, not even a successful task completion.

On the grounds of the limitations mentioned above, a
system should consider the expected task performance when
deciding a grasp affordance. However, this is a challenging
problem, given that the grasp and the task performance
are codefining and conditional on each other [10]. Recent
research in robot affordances proposes to learn this relation

∗These authors contributed equally to this work.
The authors are with the Edinburgh Centre for Robotics at the University

of Edinburgh and Heriot-Watt University, Edinburgh, UK. This research
is supported by the Scottish Informatics and Computer Science Alliance
(SICSA), EPSRC ORCA Hub (EP/R026173/1) and consortium partners.
{paola.ardon,eric.pairet}@ed.ac.uk
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Fig. 1: PR2 self-assessing a pouring affordance task. The
system first predicts the object’s grasp affordances. Then,
based on prior affordance task experiences and a heuristic
confidence metric, it self-assesses the new object’s grasp
configuration that is most likely to succeed at pouring.

via trial and error of the task [11]–[13]. Nevertheless, given
the extensive amount of required data, the method can solely
learn a single task at a time and perform on known scenarios.
In contrast, an autonomous agent is expected to be capable
of dealing with multiple task affordance problems even when
those involve unfamiliar objects and new scenarios.

In this paper, we present a novel experience-based pipeline
for self-assessment of grasp affordance transfer (SAGAT)
that seeks to overcome the lack of deployment reliability
of current state-of-the-art methods of grasp affordance de-
tection. The proposed approach, depicted in Fig. 1, starts
by extracting multiple grasp configuration candidates from
a given grasp affordance region. The outcome of executing
a task from the different grasp candidates is estimated
via forward simulation. These estimates are employed to
evaluate and rank the relation of task performance and grasp
configuration candidates via a heuristic confidence function.
Such information is stored in a library of task affordances.
The library serves as a basis for one-shot transfer to identify
grasp affordance configurations similar to those previously
experienced, with the insight that similar regions lead to
similar deployments of the task. We evaluate the method’s
efficacy on addressing novel task affordance problems by
training on one single object and testing on multiple new
ones. We observe a significant performance improvement up
to 11.7% in the considered tasks when using our proposal
in comparison to state-of-the-art approaches on grasp affor-
dance detection. Experimental evaluation on a PR2 robotic
platform demonstrates highly reliable deployability of the
proposed method in real-world task affordance problems.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
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Fig. 2: Proposed framework for self-assessment of grasp affordance transfer. After predicting a grasp affordance region, the
most suitable grasp is determined based on a library of prior task affordance experiences and a heuristic confidence metric.

II. RELATED WORK

Understanding grasp affordances for objects has been
an active area of research for robotic manipulation tasks.
Ideally, an autonomous agent should be able to identify
all the tasks that an object can afford, and infer the grasp
configuration that leads to a successful completion of each
task. A common approach to tackle this challenge is via
visual features, e.g. [4]–[7]. Methods based on visual grasp
affordance detection identify candidate grasps either via deep
learning architectures that detect grasp areas on an object
[4]–[6], or via supervised learning techniques that obtain
grasping configurations based on an object’s shape [7]. While
these techniques offer robust grasp candidates, they uniquely
seek grasp stability. Consequently, these methods cannot
guarantee any level of performance when executing a task,
and in fact, not even a successful task completion. In order
to, move towards reliable task deployment on autonomous
agents, there is the need to bridge the gap between grasp
affordance detection and task-oriented grasping.

Grasp affordances: Work on grasp affordances aims at
robust interactions between objects and the autonomous
agent. However, it is typically limited to a single grasp
affordance detection per object, thus reducing its deployment
in real-world scenarios. Some works, such as [14], focus
on relating abstractions of sensory-motor processes with
object structures (e.g., object-action complexes (OACs)) to
extract the best grasp candidate given an object affordance.
Others use purely visual input to learn affordances using deep
learning [6], [8] or supervised learning techniques to relate
objects and actions [9], [15]–[17]. Although these works
are successful in detecting grasp affordance regions, they
hypothesise suitable grasp configurations based on visual
features, rather than indicators that hint such proposals
suitability to accomplish an affordance task.

Task affordances: The end goal of grasping is to manipu-
late an object to fulfil a goal-directed task. When the grasping
problem is contextualised into tasks, solely satisfying the
grasp stability constraints is no longer sufficient. Nonethe-
less, codefining grasp configurations with task success is
still an open problem. Along this line, some works focus
entirely on learning tasks where the object category does

not influence the outcome, such as pushing or pulling [15],
[17]. Hence, reliable extraction of grasp configurations is ne-
glected. Another approach is to learn grasp quality measures
for task performance via trial and error [11]–[13]. Based on
the experiences, these studies build semantic constraints to
specify which object regions to hold or avoid. Nonetheless,
their dependency on great amounts of prior experiences and
the lack of generalisation between object instances remain
to be the main hurdle of these methods.

Our work seeks to bridge the gap between grasp affor-
dances and task performance existing in prior work. The
proposed approach unifies grasp affordance reasoning and
task deployment in a self-assessed system that, without the
need for extensive prior experiences, is able to transfer grasp
affordance configurations to novel object instances.

III. PROPOSED METHOD

An autonomous agent must be able to perform a task
affordance in different scenarios. Given a particular object
and task T to perform, the robot must select a suitable grasp
affordance configuration g∗p that allows executing the task’s
policy πτ successfully. Only the correct choice of both g∗p and
πτ leads to the robot being successful at addressing the task
affordance problem. Despite the strong correlation between
g∗p and the πτ execution performance, current approaches
in the literature consider these elements to be independent.
This results in grasping configurations that are not suitable
for completing the task.

In this section, we introduce our approach to self-assess
the selection of a suitable grasp affordance configuration
according to an estimate of the task performance. Fig. 2
illustrates the proposed pipeline which (i) detects from visual
information a set of grasping candidates lying in the object’s
grasp affordance space (Section III-A), (ii) exploits a learnt
library of task affordance policies to forward simulate the
outcome of executing the task from the grasping candidates
(Section III-B), and then (iii) evaluates the grasp configu-
ration candidates subject to a heuristic confidence metric
(Section III-C) which allows for one-shot transfer of the
grasp proposal (Section III-D). Finally, in Section III-E, we
detail how theses components fit in the scheme of a robotic
agent dealing with task affordance problems autonomously.
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A. Prediction of Grasp Affordance Configurations

The overall goal of this work is, given an object’s grasp
affordance region G∗, to find a grasp configuration g∗p that
allows the robot to successfully employ an object for a partic-
ular task. In the grasp affordance literature, it is common to
visually detect and segment the grasp affordance region G∗

using mapping to labels [6], [8], [9]. While these methods all
predict g∗p via visual detection hypotheses, none estimate the
configuration proposals based on a task performance insight.
This relational gap endangers a successful task execution. In-
stead, an autonomous agent should be capable of discerning
the most suitable grasp that benefits the execution of a task.

To bridge this gap, in our method we consider a grasp
affordance region G∗ in a generic form such as the bounding
box provided by [9] (see Fig. 3a). We are interested in prun-
ing this region by finding multiple grasp proposal candidates.
With this aim, we use the pre-trained DeepGrasp model [5],
a deep CNN that computes reliable grasp configurations on
objects. The output grasp proposals gpi from DeepGrasp,
which do not account for affordance relation, are shown
in Fig. 3b. The pruned region (see Fig. 3c), denoted as
gpi ∈ G∗, provides a set of grasp configuration candidates
that accounts for both reliability and affordability.

B. Library of Task Affordances

The success of an affordance task T lies in executing
the corresponding task policy πτ from a suitable grasp
configuration g∗p . This is a difficult problem given that the πτ
and g∗p are codefining [10]. Namely, the task’s requirements
constrain the possibly suitable grasp configurations g∗p , at
the same time that the choice of g∗p conditions the outcome
of executing the task’s policy πτ . Additionally, determining
whether the execution of a task is successful requires a
performance indicator. To cope with this challenge, we build
on our previous work [18] to learn a library L of task
affordances from human demonstrations. The library aims at
simultaneously guiding the robot on the search of a suitable
task policy πτ while informing about its expected outcome
ατ when successful. All these elements serve as the basis of
the method described in Section III-C to determine g∗p via
self-assessment of the candidates gpi ∈ G∗.

In this work, we build the library of task affordances as:

L =
{
T1 → {πτ1 , Aτ1}, · · · , Tn → {πτn , Aτn}

}
, (1)

where πτ is a policy encoding the task in a generalisable
form, and ατ ∈ Aτ is a set of possible successful outcomes
when executing πτ . In our implementation, πτ is based on
dynamic movement primitives (DMPs) [19], [20]. DMPs
are differential equations encoding behaviour towards a goal
attractor. We initialise the policies via imitation learning, and
use them to reproduce an observed motion while generalising
to different start and goal locations, as well as task durations.

Regarding the set of possible successful outcomes
ατ ∈ Aτ , we provide the robot with multiple experiences.
We define the outcome ατ as the state evolution of the
object’s action region SO through the execution of the
task. We employ mask RCNN (M-RCNN) [21] to train a

(a) G∗ from [9] (b) gpi from [5] (c) Combined gpi ∈ G∗

Fig. 3: Prediction of grasp affordance configurations for the
pouring task. (a) Patch affording the pouring task, (b) reliable
grasp configurations from DeepGrasp, (c) pruned space for
reliable grasp candidates that afford the task pouring.

model that detects objects subparts as action regions SO.
As exemplified in Fig. 4, the action region state provides a
meaningful indicator of the task. This information is used as
the basis for our confidence metric, which evaluates the level
of success of an affordance task for a grasping proposal.

C. Search-Based Self-Assessment of Task Affordances

The task policies πτ learnt in Section III-B allow a previ-
ously experienced task from any candidate grasp gpi ∈ G∗
to be performed. Nonetheless, executing πτ from any grasp
configuration may not always lead to suitable performance.
For example, Fig. 4 depicts the case where grasping the mug
from gp1 prevents the robot from performing a pouring task
as adequately as when grasping it from gp2 .

We propose to self-assess the outcome of executing the
task’s policy πτ from gpi ∈ G∗ before deciding the most

grasp proposal

time frame view of the object

segmented action region trajectory

1

action region

(a) Unsuccessful pour (grasping at gp1)

time frame view of the object

segmented action region trajectory

2

grasp proposal

action region

(b) Successful pour (grasping at gp2)

Fig. 4: Example of a pouring task from two different
grasp configurations. Each situation illustrates the raw two-
dimensional (2-D) camera input of the object and the seg-
mented action region that affords the pouring task.
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suitable grasp configuration g∗p on a new object. This is
efficiently done by forward simulation of the DMP-encoded
πτ . From each roll-out, we look at the object’s state action
region ατ as a suitable task performance indicator. To this
aim, we consider the entropy between the demonstrated
successful task outcomes ατ and the simulated outcome ατ
in the form of Kullback-Leibler divergence [22]:

D(ατ ||ατ ) =
∑
i∈I

ατ (i) log

(
ατ (i)

ατ (i)

)
, (2)

which results in a low penalisation when the forward sim-
ulated outcome ατ is similar to a previously experienced
outcome in Aτ , and a high penalisation otherwise. Then, we
propose to rank the grasping candidates gpi ∈ G∗ according
to a confidence metric which estimates the suitability of a
candidate gpi for a given T as:

C(gpi) = max
ατ∈Aτ

D91(ατ ||ατ ). (3)

Finally, we select the grasping configuration g∗p among all
grasping candidate gpi ∈ G∗ as:

g∗p = arg max
gpi∈G∗

C(gpi) s.t. C(gpi) > δ, (4)

which returns the grasp configuration with highest confidence
of successfully completing the task. This assessment is
subject to a minimum user-defined confidence level δ that
rejects under-performing grasp configuration proposals. As
explained in the experimental setup, such a threshold is
adjusted from demonstration by a binary classifier.

D. One-Shot Self-Assessment of Task Affordances

The search-based strategy presented in Section III-C in the
grasp affordance region can be time and resource consuming
if performed for every single task affordance problem. Al-
ternatively, we propose to augment the library in (1) with an
approximate of the prior experienced outcomes ατ per grasp
configuration gpi , such that it allows for one-shot assessment.
Namely, we extract the spatial transform of all experienced
grasps with respect to the detected grasp affordance region
G∗. The relevance of these transforms is ranked in a list R
according to their confidence score computed following (3).
Therefore, the augmented library is denoted as:

L =
{
T1 → {πτ1 , Aτ1 , Rτ1}, · · · , Tn → {πτn , Aτn , Rτn}

}
.

(5)
At deployment time, we look at the spatial transform from

the new grasping candidates that resembles the most well-
ranked transform in R. This allows us to hierarchically self-
assess the candidates by order of prospective success.

E. Deployment on Autonomous Agent

Algorithm 1 presents the outline of SAGAT’s end-to-end
deployment, which aims at improving the success of an
autonomous agent when performing a task. Given visual
perception of the environment, the desired affordance, the
pre-trained model to extract the grasp affordance relation
(see Section III-A), the model to detect the action region,

Algorithm 1: deployment of SAGAT

1 Input:
2 CVF: camera visual feed
3 affordance: affordance choice
4 graspAffordance: grasp affordance model
5 actionRegion: MRCNN learnt model
6 libTaskAffordances: task affordance library
7 Output:
8 g∗p: most suitable grasp affordance configuration

9 begin
10 G∗ ← graspAffordance(CVF, affordance)
11 SO ← actionRegion(CVF, affordance)
12 gp ← libTaskAffordances(G∗, affordance)
13 while not isEmpty(gp) do
14 gpi ← popHighestCondifence(gp)
15 ατ ← forwardSimulateTask(gpi , SO)
16 if prospectiveTaskSuccess(ατ ) then
17 return gpi

18 return none

and the learnt library of task affordances (see Section III-
B to Section III-D) (lines 2 to 6), the end-to-end execution
is as follows. First, the visual data is processed to extract
the grasp affordance region (line 10) and the object’s action
region (line 11). The resulting grasp affordance region along
with the desired affordance are used to estimate the grasp
configuration proposals on the new object using the library of
task affordances as prior experiences (line 12). The retrieved
set of grasp configuration candidates is analysed in order of
decreasing prospective success (line 13 to line 17) until either
exhausting all candidates or finding a suitable grasp for the
affordance task. Importantly, the hierarchy of the proposed
self-assessment analysis allows for one-shot transfer of the
grasp configuration proposals, i.e. to find, on the first trial,
a suitable grasp affordance by analysing the top-ranked
grasp candidate. Nonetheless, the method also considers the
case that exhaustive exploration of all candidates might be
required, thus ensuring algorithmic completeness.

Notably, the proposed method is not dependant on a
particular grasp affordance or action region description. This
modularity allows the usage of the proposed method in a
wide range of setups. We demonstrate the generality of
the proposed method by first, using multiple state-of-the-
art approaches for grasp affordance detection, and then,
determining the improvement on task performance and de-
ployability when used altogether with our approach.

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

The proposed methodology endows a robot with the ability
to determine a suitable grasp configuration to succeed on an
affordance task. Importantly, such a challenge is addressed
without the need for extensive prior trials and errors. We
demonstrate the potential of our method following the exper-
imental setup described in Section IV-A and a thorough eval-
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Fig. 5: Entropy measurements on the 2-D frame for the pouring task. We consider as reference a socially acceptable pouring
demonstration (green) against successful (blue) and undesired (red) task repetitions from different grasp candidates. The
candidates are numbered with the corresponding observed effect. Successful tasks present low entropy whereas undesired
effects have higher entropy. Our proposal exploits this relation to discern among grasp candidates at deployment time.

uation based on the following tests: (i) the spatial similarity
between learnt and computed configurations across objects
(Section IV-B), (ii) the accuracy of the task affordance
deployment when transferred to new objects (Section IV-C),
and (iii) the performance of our proposal when compared to
other methodologies (Section IV-D).

A. Experimental Setup

The end-to-end execution framework presented in Algo-
rithm 1 is deployed on a PR2 robotic platform, in both
simulated and real-world scenarios. We use a Kinect mounted
on the PR2’s head as our visual sensor and the position
sensors on the right arm joints to encode the end-effector
state pose for learning the task policies in the library.

We evaluate the proposed approach with an experimental
setup that considers objects with variate affordable actions
and suitable grasping configurations. Particularly, the library
of task affordances is built uniquely using the blue mug
depicted in Fig. 5, but evaluated with the objects depicted
in Fig. 6. As can be observed, the training and testing
sets present a challenging and significant variability on
the grasp affordance relation. Our experimental setup also
considers multiple affordances, namely: pouring, handover
and shaking. The choice of these affordances is determined
by those being both common among the considered objects
and socially acceptable according to [9].

The task policy and its expected effect corresponding
to each affordance are taught to the robot via kinaesthetic
demonstration. The end-effector state evolution is used to
learn the task policy in form of a set of DMPs, and the state
evolution of the container’s action region segmented on the
2-D camera frame to learn the expected effect. As depicted
in Fig. 5 for the pouring task, the learnt policy is replicated 9
times from different grasping candidates, including suitable
grasp affordances (blue) and undesired deployments (red).

The collected demonstrations are used to adjust the con-
fidence threshold in (4) via a binary classifier, where the
confidence level computed following (3) is the support, and

the label {“successful”, “undesired”} is the target. Only
successful deployments are included in the library.

B. Spatial Similarity of Grasp Configurations

Our method allows the system for one-shot transfer of
grasp configurations to new objects. As explained in Sec-
tion III-D, we rank the grasp candidates on new objects
as those that closely resemble the experiences stored in
the library of task affordances. This approximation is based
on the expectation that similar spatial configurations should
offer similar performance when dealing with the same task.
In this set of experiments, we demonstrate the validity
of such a hypothesis by evaluating the spatial similarity
between the proposals estimated on new objects and the ones
previously identified as suitable and stored in the library.

For an object, we calculate the Euclidean distance between
the segmented action region SO and the obtained grasp
configuration g∗p . Fig. 7 shows the obtained distances de-
noted as dh(SO, g∗p). The blue horizontal line represents the
mean distance obtained during the demonstrations. Overall,
we observe similar distances from action regions to grasp
configurations across objects. For dissimilar cases such as
4 and 5 (ashtray and bowl respectively), the difference is

Fig. 6: Novel objects to test the self-assessed grasp transfer.
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(a) Pour (dhd = 0.21) (b) Shake (dhd = 0.23) (c) Handover (dhd = 0.20)

Fig. 7: Visualisation of the dissimilarity metric between an object’s action region and the corresponding suitable grasp
configuration, in comparison to the mean dissimilarity observed during the demonstrations (dhd, blue horizontal line).

given by the fact that the obtained grasping region for most
of the tasks lies on the edges of the object compartment. Even
though these grasping configurations are relatively close to
the action region, we will see on Table I that the average
performance of the tasks is preserved.

To further evaluate similarity across obtained grasping
configurations, we are also interested in how much the
system prunes the grasping space based on the information
stored in the library. As defined in (4), we use a confidence
threshold for the pruning process of the grasping space. Thus,
based on the prior of well-performing grasp configurations,
highly dissimilar proposals are not considered on the self-
assessed transfer process. Fig. 8 depicts the rejection rate of
grasp configuration proposals per task affordance. From the
plot, we see that the pouring task shows the highest rejection
rate, especially for objects that have handles. This hints that
for this task the grasping choice is more critical.

C. One-Shot Transfer of Task Affordances

The second experimental test analyses the performance
of our method when addressing task affordances on new

pour
shake
handover

Fig. 8: Rejection rate of grasp candidates with prospective
unsuccessful task deployment. Grasp configurations, as ex-
tracted with DeepGrasp [5], that do not relate to the prior
on successful task deployment, as stored in the library, are
rejected in the one-shot transfer scheme.

(a) Pour task affordance

(b) Shake task affordance

(c) Handover task affordance

Fig. 9: Task affordance performance when deployed on novel
objects (colour-coded lines) in comparison with the multiple
successful demonstrations (green scale distribution).
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(standalone)
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affordance prediction

with SAGAT

real 
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synthetic 
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real 
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synthetic 
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Fig. 10: Comparison of grasp affordance detection for the
task of pouring with state-of-the-art methods and SAGAT.
The resulting grasp configuration proposals obtained with
SAGAT are highlighted for better visualisation.

objects. The goal of this evaluation is to determine if the
chosen grasp configuration enables objects to perform the
task affordance as successfully as the prior stored in the
library. Fig. 9 depicts the mean and variance (green scale)
of the prior experiences in the library for the tasks pour,
shake and handover. Each task was performed with three
real objects with notably different features: a travel mug
(dark blue), measurement spoon (magenta) and a glass (blue).
The resulting effect when performing the tasks from the
computed grasping configuration is colour-coded on top of
the prior experiences distribution.

Subject to the task affordance, the three objects show
different grasp affordance regions. After the one-shot self-
assessment procedure, the computed grasp configurations are
the most spatially similar to the most successful grasp con-
figuration in the experience dataset. Importantly, as shown in
Fig. 9, this strategy is invariant to the initial and final states
of the task. This is reflected in the obtained task affordance
effect, which falls inside the variance of the demonstrations.

D. Comparison of Task Deployment Reliability

The last experimental test is to demonstrate at which
level the proposed method enhances the task deployment
reliability when used in conjunction with methods for grasp
affordance detection [6], [8], [9]. To conduct this evaluation,
we use the open-source implementations of [6], [8], [9] on all
objects illustrated in Fig. 6, in the real and simulated robotic
platform. The obtained grasp regions are used to execute the
task in two different ways: (i) in stand-alone fashion, i.e. as
originally proposed, and (ii) as input of our SAGAT approach
to determine the most suitable grasp candidate. Fig. 10 shows
some examples of the grasp affordance detected with the
previously mentioned methods and our approach.

We use the policies in the learnt library of task affordances
to replicate the pour, shake and handover tasks on each
object, for each grasp affordance, and for each method when
used as stand-alone and combined with SAGAT. This results

[8] [8]+SAGAT [9] [9]+SAGAT [6] [6]+SAGAT

Pour 70% 82% 72% 83% 73% 85%
Shake 84% 87% 85% 87% 86% 88%
Handover 80% 85% 81% 86% 82% 86%

TABLE I: Comparison of success rates on task affordance
deployment when using state-of-the-art grasp affordance
extractors as stand-alone and with our method.

in a total of 126 tasks deployments on the robotic platform1.
Table I summarises the obtained results. As can be observed,
deploying a task using state-of-the-art methods on grasp
affordance detection provides an average success rate of
79.2% across tasks. With our approach, the deployability
success is enhanced for all the tasks, with an average rate of
85.4%. Interestingly, the 5.2% improvement is not equally
distributed across tasks; more challenging tasks experience
a higher success rate. This is the case of the pouring tasks
where deployability success is increased by 11.67%.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel experience-based
pipeline for self-assessment of grasp affordance transfer
(SAGAT). Our approach enhances the deployment reliability
of current state-of-the-art methods on grasp affordance de-
tection, by extracting multiple grasp configuration candidates
from a given grasp affordance region. The outcome of
executing a task from different grasp candidates is estimated
via forward simulation. These estimates are evaluated and
ranked via a heuristic confidence function in relation to
task performance and grasp configuration candidates. Such
information is stored in a library of task affordances, which
serves as a basis for one-shot transfer estimation to identify
grasp affordance configurations similar to those previously
experienced, with the insight that similar regions lead to
similar deployments of the task. We evaluate the method’s
efficacy on novel task affordance problems by training on a
single object and testing on multiple new ones. We observe
a significant performance improvement up to approximately
11.7% in our experiments when using our proposal in com-
parison to state-of-the-art approaches on grasp affordance
detection. Experimental evaluation on a PR2 robotic platform
demonstrates highly reliable deployability of the proposed
method to deal with real-world task affordance problems.

This work encourages multiple interesting directions for
future work. Our follow-up work will study a unified proba-
bilistic framework to infer the most suitable grasp affordance
candidate. We envision that this will allow sets of actions and
grasps to be predicted when dealing with multiple correlated
objects in the scene. Consequently, including a task planning
layer that connects actions with grasp affordances. Another
interesting extension is the assessment of the end-state
comfort-effect for grasping in human-robot collaboration
tasks, such that the robot’s grasp affordance considers the
human’s grasp capabilities.

1A compilation of experiments can be found in: https://youtu.be/
nCCc3_Rk8Ks
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[9] P. Ardón, È. Pairet, R. P. Petrick, S. Ramamoorthy, and K. S. Lohan,
“Learning grasp affordance reasoning through semantic relations,”
IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4571–4578,
2019.

[10] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learn-
ing object affordances: From sensory–motor coordination to imita-
tion,” IEEE Trans. Robotics, vol. 24, pp. 15–26, 2008.

[11] K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, L. Fei-Fei,
and S. Savarese, “Learning task-oriented grasping for tool manipu-
lation from simulated self-supervision,” The International Journal of
Robotics Research, p. 0278364919872545, 2019.

[12] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao,
J. Emmons, A. Gupta, E. Orbay, et al., “Roboturk: A crowdsourcing
platform for robotic skill learning through imitation,” in Conference
on Robot Learning, pp. 879–893, 2018.

[13] O. Kroemer, E. Ugur, E. Oztop, and J. Peters, “A kernel-based
approach to direct action perception,” in 2012 IEEE International
Conference on Robotics and Automation, pp. 2605–2610, IEEE, 2012.
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Critical Review - Closing

In this part of the thesis, we have formalised a strategy to acquire, store and recall abstractions
with the purpose of bootstrapping robotic behaviour. We started arguing the ease of acquiring
motions, and their suitability, to bootstrap robotic behaviour on varied tasks. Obtained
behavioural samples are stored in a library of motions with semantic attachment to the task
they relate to. Then, on deployment, such relational database enables retrieving a sample of a
motion solving a problem related to the task at hand. To conclude this part, we provide a
summary of the key results and discuss how the findings form a coherent piece of this thesis.

6.1 Results

The presented strategy of bootstrapping problem-relevant robotic behaviour via motion-based
relational databases has been developed in two stages. Each iteration has been supported with
experimental evaluation, in both synthetic environments and real-world robotic platforms. In
particular, we provided the following results:

Chapter 4 We demonstrated our framework to enable the bootstrapping of relevant robot
behaviour in accordance with a given planning problem. We showed that
considering trajectories as behavioural abstractions allows acquiring samples from
human demonstrations, at different reference frames. Additionally, we explored the
possibility of concatenating sequentially and simultaneously to generate more
complex behaviours than those encoded in the libraries.

Chapter 5 We demonstrate our framework generality to extend the autonomy capabilities of a
robotic agent. Linking our framework to affordances enables a robot agent to cope
with planning problems as “pour the content of the cup into the blue bowl”; the
framework determines the relevant behavioural abstraction to pour, whereas the
link to affordances deal with goal and grasp identification. In other words, the
framework’s linkage to affordances bridges high-level problem definitions to
planning-understandable objectives.
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6.2 Discussion

Our efforts in the direction of bootstrapping robotic behaviour via abstractions to support
efficient motion synthesis result in the following contribution: a framework that leverages
intuition on the behavioural requirements of a task to provide some bias, in form of a
trajectory, to the motion synthesis process. Such capability is relevant to the prospect of robot
autonomy, as the framework, altogether with its tight link to affordances, is capable of dealing
with more generic, less human-processed, planning problems.

We exemplified the applicability of the framework by leveraging the extracted behavioural bias
with DMPs. Importantly, the generality of the proposed framework allows its deployment on
different robotic tasks and robotic platforms. In fact, this part of the thesis has demonstrated
the usability of the framework in several tasks, and two different robotic platforms (iCub and
PR2). Results in this project consolidate the assumption that the remaining of the thesis builds
on; the existence of a strategy capable of identifying a behavioural abstraction (set of trajectories
or, equivalently, a set of DMPs) relevant to a particular problem, if any.

In the remaining of the thesis, we investigate methods to leverage the extracted behavioural
abstractions in differing tasks contexts (e.g., different start and goal configurations, or presence
of obstacles). In particular, in Part III, we hold on the assumption that we have some information
a-priori about the task to explore strategies to generalise the motion samples to more varied
tasks contexts. Then, in Part IV, we explore the applicability of behavioural abstractions in
complex, ever-changing planning problems, from which there is not a-priori information.

We have discussed some directions for future work in the corresponding manuscripts. Among
them, we are particularly keen on the possibilities that such a framework offers for task planning.
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Critical Review - Opening

Building on the capability of bootstrapping robot behaviour from a library of experiences
presented in Part II [123, 5], in this part of the thesis, we focus on the challenge of generalising
those experiences to novel task contexts. Enabling a robot to generalise prior information to
varied task contexts is essential as the prior might not always be tightly relevant to the current
planning problem. Thus, our aim is to formulate planning strategies capable of leveraging any
prior experience to guide robot behaviour in significantly dissimilar task contexts.

7.1 Objectives and Contribution

There are many aspects that might differentiate instances of the same task. In the scope of this
thesis, we focus on the generalisation needs involved with changes on the required start and goal
configuration of the robotic system, and variability on the number of obstacles, their pose and
geometric constitution. Therefore, in order to enable a robot leveraging from a prior experience
across task instances, we need to (1) identify relevant features from the observed data, to then
(2) reason about how these features extrapolate to new tasks. We present two independent
approaches to these objectives, which lead to two different notable contributions:

Chapter 8 A hierarchical framework which safely modulates an ongoing DMP-encoded policy to
avoid obstacles. The proposed approach follows a multilayered perception-decision-
action analysis which (i) extracts unified system-obstacle low-dimensional geometric
descriptors, then (ii) exploits them to rapidly reason about the environment with
a combination of heuristics and learning techniques, and finally (iii) guides and
regulates the obstacle avoidance behaviour with a conjunction of coupling terms
modulating the task policy encoded as a DMP.

Chapter 9 Two new experience-based planners: the uni-directional experience-driven random
trees (ERT) and its bi-directional version (ERTConnect). Both methods are tree
sampling-based planners that iteratively exploit a single prior path experience to
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ease the capture of connectivity of the space. At each iteration, a segment of the
prior is extracted and semi-randomly modulated to generate a task-relevant motion.
The obtained motions are sequentially concatenated to compose a task-relevant tree,
such that a trace along the edges constitutes a solution to a given planning problem.

7.2 Methodology

The library of experiences presented in Part II [123, 5] employed DMPs to encode observed
robotic behaviour, and generalise it to novel task instances. Whilst the concept of the library is
not restricted to any particular motion policy, we initially adopted the DMP motion descriptor
to pursue the aims of this part of the thesis; their generalisation capabilities already extend to
different start and goal configurations, task duration, as well as point-based obstacles using the
coupling term formulated in [61]. Such a coupling term creates a parameter-dependent repulsive
force that modulates the underlying DMP for the system to steer away from obstacles. The main
limitation of such an approach, however, is the assumption that an obstacle can be reduced to
a point-mass, as well as the obstacle avoidance behaviour being parameter dependant.

Early work [120, 121] of this thesis mitigated the obstacle avoidance limitations of DMPs with
a learning from demonstration-based approach. In particular, we proposed teaching the robot
varied obstacle avoidance styles, each being suitable to circumnavigate obstacles of different
sizes. We captured each obstacle avoidance style by estimating the parametrisation of the
coupling term in [61] that explained the contrast between a perturbationless task, and one
with an obstacle; their dynamical difference was assumed to be purely due to the presence
of an obstacle. Then, the estimate of the best-approximating parameterisation was computed
applying least mean squares (LMS) regression on the log-linearised coupling term.

We tested such approach with the real iCub humanoid robot (see Figure 7.1). We demonstrated,
with respect to a symbolic point-mass obstacle (red sphere), two different obstacle avoidance
styles: reckless (see Figure 7.1a) and conservative (see Figure 7.1b). While the former steers
around the point-mass obstacle closely (behaviour potentially suitable to avoid small obstacles),
the latter keeps a larger distance to it (behaviour potentially suitable for bigger obstacles).
The recorded raw proprioception data of these two kinaesthetic demonstrations is respectively
portrayed in Figure 7.1c and Figure 7.1d. The retrieved trajectories were pre-processed by
(i) filtering out outliers and high-frequency noise, and (ii) projecting the resulting information
to the 2D space defined by the two principal components of the data (i.e., we assumed that
avoiding the obstacle was intended along the same direction during the whole demonstration).
Figure 7.1e and Figure 7.1f show the preprocessed data (red trajectories), later used to learn the
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Figure 7.1: iCub humanoid robot learning the primitive skill of obstacle avoidance with two
different behaviours: reckless (first column) and convervative (second column). (a)-(b) Human
demonstrations to avoid an obstacle (red sphere). (c)-(d) iCub’s proprioception data.
(e)-(f) Processed proprioception data (red trajectory) and learnt behaviour (blue trajectory).

Figure 7.2: Generalisation capabilities to multiple obstacles and in 3D scenarios of the learnt
reckless (magenta trajectory) and conservative (green trajectory) obstacle avoidance behaviours.
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parameters defining the demonstrator’s obstacle avoidance behaviour. The encoded reckless and
conservative styles are respectively depicted in Figure 7.1e and Figure 7.1f (blue trajectories).
Overall, learning the parameters of the coupling term in [61] from human demonstrations avoids
blindly hand-tuning the obstacle avoidance behaviour, allows reproducing the observed styles to
cope with obstacles of different geometric constitution, and enables the robot to generalise such
behaviour to scenes with multiple obstacles (see Figure 7.2).

Our learning by demonstration-based approach showed to be suitable to capture, reproduce
and generalise the demonstrator’s style in avoiding obstacles. However, we did not pursue such
direction due to the dependency on high-quality data, being a time-consuming teaching process,
and requiring an additional layer of reasoning to select the most suitable style given a particular
obstacle geometric constitution. Instead, we used these challenges to motivate the research
project detailed in Chapter 8 [124]. In there, we designed a semi-supervised learning strategy
to learn suitable coupling term parametrisations subject to obstacles of different shapes and
sizes. To make the learning and generalisation tractable, the obstacle avoidance problem was
studied in the workspace, particularly on a 2D plane, whose orientation in the workspace was
guided by some heuristics. Overall, such an approach to generalise DMP-encoded behaviours
showed high reliability, even in completely unknown environments, while offering nearly real-time
performance. These desirable properties, however, were achieved at the cost of not providing
kinematic feasibility guarantees on the computed path due to planning in the workspace.

Bearing these limitations in mind, we adopted the strengths of our research into a sampling-
based planning scheme, as detailed in in Chapter 9 [125]. Namely, we thought of the malleable
nature of a DMP under the influence of a coupling term as that of an affine transform. With
that insight, we proposed two experience-based planners, the ERT and its bi-directional version
ERTConnect, which repeatedly apply semi-random affine transforms onto parts of a prior path
experience to build a tree of locally modulated micro-experiences. Overall, such a strategy
demonstrated to allow efficiently leveraging a single prior experience to compute motion plans
quickly. We also showed how to select such unique prior path experience from a library of task-
relevant experiences. In other words, we designed this research on the capabilities developed
earlier in this thesis, but instead of a library of DMPs (each task being encoded with a unique
DMP), we envisioned a library of libraries, where each task’s prior is a library of task-relevant
prior paths.
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Learning Generalizable Coupling Terms for
Obstacle Avoidance

In this chapter, we focus on extending the generalisation capabilities of dynamic movement
primitives (DMPs) to also cope with obstacles of any geometric constitution. We design a
hierarchical framework that generates reactive yet bounded obstacle avoidance DMP
modulations through a multi-layered analysis. The framework leverages the strengths of
learning techniques and the versatility of DMPs to efficiently unify perception, decision, and
action levels via low-dimensional geometric descriptors of the environment. Experimental
evaluation on synthetic environments and a real anthropomorphic manipulator proves that our
method’s robustness and generalisation capabilities, regardless of the obstacle avoidance
scenario, makes our approach suitable for robotic systems in real-world environments.

All proposed work is described in detail in the following published journal article:

Title: “Learning Generalizable Coupling Terms for Obstacle Avoidance via Low-
Dimensional Geometric Descriptors”

Authors: Èric Pairet, Paola Ardón, Michael Mistry, and Yvan Petillot
Journal: IEEE Robotics and Automation Letters
Volume: 4, Number: 4, Pages: 3979–3986, Published: 2019
DOI: 10.1109/LRA.2019.2930431

Multimedia: https://youtu.be/lym5cCbjI3k
Open-source code: https://github.com/ericpairet/ral_2019
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Learning Generalizable Coupling Terms for
Obstacle Avoidance via Low-Dimensional

Geometric Descriptors
Èric Pairet , Paola Ardón , Michael Mistry , and Yvan Petillot

Abstract—Unforeseen events are frequent in the real-world en-
vironments where robots are expected to assist, raising the need
for fast replanning of the on-going policy to guarantee operational
safety. Inspired by human behavioral studies of obstacle avoidance
and route selection, this letter presents a hierarchical framework
that generates reactive yet bounded obstacle avoidance behaviors
through a multi-layered analysis. The framework leverages the
strengths of learning techniques and the versatility of dynamic
movement primitives to efficiently unify perception, decision, and
action levels via environmental low-dimensional geometric descrip-
tors. Experimental evaluation on synthetic environments and a real
anthropomorphic manipulator proves the robustness and gener-
alization capabilities of the proposed approach regardless of the
obstacle avoidance scenario.

Index Terms—Collision avoidance, reactive and sensor-based
planning, autonomous agents.

I. INTRODUCTION

ROBUST reactive behaviours are essential to ensure the
safety of robots operating in unstructured environments.

For instance, the on-going pick-and-place policy of a robotic
system sorting and storing items in a home environment might
be interrupted by the sudden appearance of an obstacle in the
middle of a pre-planned trajectory. In this scenario, the robot
must be able to modulate its behaviour online to succeed in its
task while providing some safety guarantees. Given the expertise
of humans in dealing with these conditions, it is natural to adopt
human behaviour for robotic control.

Human behavioural studies of obstacle avoidance and route
selection [1] have shown that the dynamics of perception
and action consist of (i) identifying the informational vari-
ables useful to guide behaviour and to regulate action, and
(ii) interacting with the environment using a particular set of

Manuscript received February 24, 2019; accepted July 4, 2019. Date of
publication July 23, 2019; date of current version August 2, 2019. This letter
was recommended for publication by Associate Editor G. Neumann and Editor
T. Asfour upon evaluation of the reviewers’ comments. This work was supported
in part by the ORCA Hub EPSRC (EP/R026173/1) and in part by consortium
partners. (Corresponding author: Èric Pairet.)

The authors are with the Edinburgh Centre for Robotics, University
of Edinburgh and Heriot-Watt University, Edinburgh EH14 4AS, U.K.
(e-mail: eric.pairet@ed.ac.uk; paola.ardon@ed.ac.uk; mmistry@inf.ed.ac.uk;
y.r.petillot@hw.ac.uk).

This letter has supplementary downloadable material available at http://
ieeexplore.ieee.org, provided by the authors. This video provides a brief sum-
mary of the fundaments and experimental evaluation of this work. The total size
of the file is 9.51 MB. Contact Èric Pairet (eric.pairet@ed.ac.uk) for further
questions about this work.

Digital Object Identifier 10.1109/LRA.2019.2930431

Fig. 1. Proposed hierarchical framework for learning and producing gener-
alisable obstacle avoidance behaviours. Pre-planned start-go-goal (blue) and
modulated policy (red).

dynamic behaviours. One possible policy descriptor allowing
for this hierarchical control are dynamic movement primitives
(DMPs) [2]. dynamic movement primitives (DMPs) are differ-
ential equations encoding kinematic control policies towards a
goal attractor. Their transient behaviour can be shaped via a
non-linear forcing term, which can be initialised via imitation
learning and used to reproduce an observed motion while gen-
eralising to different start and goal locations, as well as task
durations.

A key feature of DMPs is that they allow for online mod-
ulation via coupling term functions that create a forcing term.
Coupling terms have been exploited for many applications, such
as avoidance of joint and workspace limits [3], force control
for environment interaction [4], [5], dual-arm manipulation [4],
[6] and reactive obstacle avoidance [7]–[10]. This work focuses
on the latter challenge, which historically has been approached
using potential fields [7], analytical [8] and learning methods [9],
[10] (see Section II). As further discussed in Section II-C, analyt-
ical formulations become less reactive for imminent collisions
(dead-zone problem). Moreover, these approaches do not pro-
vide any guidance to the reactive behaviour, thus limiting their
applicability to free-floating obstacles. Additionally, analytical
formulations uniquely deal with point-mass obstacles and sys-
tems. In an attempt to address this latter issue, recent proposals
learn coupling terms for a small set of obstacle geometries
described by an array of markers on their surface [9], [10], but
they fail to generalise actions to novel obstacles. These works
are notable in learning the coupling terms from human demon-
stration. Nonetheless, providing a rich set of demonstrations
involving various obstacles geometries can be time-consuming
and prone to measurement noise.

2377-3766 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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This letter presents the hybrid DMP-learning-based obstacle
avoidance framework schematised in Figure 1. The proposed
approach addresses the limitations of the precedent works with
a layered perception-decision-action analysis [1]. The main
contributions at the action level (see Section III) are (i) reformu-
lating the coupling terms to provide dead-zone free behaviours,
and (ii) guiding the obstacle avoidance reactivity to satisfy
task-dependant constraints, while the main contributions at the
perception-decision level (see Section IV) are (iii) regulating
action according to the extracted unified system-obstacle low-
dimensional geometric descriptor, and (iv) learning to regulate
the action level via exploration of the parameter space. The
experimental evaluation reported in Section V demonstrates that
the overall proposed approach generalises obstacle avoidance
behaviours to novel scenarios, even when those involve multiple
obstacles, or are uniquely described by partial visual-depth
observations.

II. RELATED WORK

This letter proposes a reactive approach that endows a system
with the ability to modulate its policy to avoid unexpected
obstacles. The selected strategy uses DMPs for encoding any
desired policy and defining an obstacle avoidance behaviour as
a coupling term. This section introduces DMPs and coupling
terms for obstacle avoidance as they constitute the fundamentals
of this work.

A. Dynamic Movement Primitives

DMPs are a versatile framework that encode primitive mo-
tions or policies as nonlinear functions called forcing terms [2].
The DMPs equations define the system’s state transition, which
can be converted into actuator commands by means of inverse
kinematics and inverse dynamics. For a one-degree of free-
dom, long-plural-form = degrees of freedom (DoF) system, the
system’s state transition is described by the following set of
nonlinear differential equations, known as the transformation
system:

τ ż = αx(βx(gx − x) − z) + f(·) + C(·), (1)

τ ẋ = z, (2)

where τ is a scaling factor for time, x is the system’s position, z
and ż respectively are the scaled velocity and acceleration, αx

and βx are constants defining the attraction dynamics towards
the model’s attractor gx, and f(·) and C(·) are the forcing and
coupling term, respectively.

The forces generated by the forcing and coupling terms de-
fine the transient behaviour of the transformation system. It is
common to model the forcing term f(·) as a weighted linear
combination of nonlinear radial basis functions (RBFs). The
evaluation of f(·) at phase k ∈ k is defined as:

f(k) =

∑N
i=1 wiΨi(k)∑N

i=1 Ψi(k)
k, (3)

Ψi(k) = exp
(
−hi(k − ci)

2
)
, (4)

where ci and hi > 0 are the centres and widths, respectively, of
the i ∈ [1, N ] RBFs, which are weighted by wi and distributed
along the trajectory. The weights can be initialised via imitation

Fig. 2. Original coupling terms for obstacle avoidance [8]. (a) Heading angle
θ according to velocity vector ẋ and the relative obstacle-system position in
P-plane. (b) Change of steering angle θ̇ subject to heading angle θ as defined
by (7).

learning and used to reproduce the motion with some general-
isation capabilities to changes in start and goal positions. The
duration of the motion can be adjusted by the scaling factor
τ , which modifies the canonical system defining the transient
behaviour of the phase variable k as:

τ k̇ = −αkk, (5)

where the initial value of the motion’s phase k(0) = 1 and αk

is a positive constant.
A common strategy to extend the spatial generalisation capa-

bilities of DMPs is to reference them in a local frame, whose pose
in the space is task-dependent [2], [10]. In this work’s context,
the unit vectors of the local frame are defined as follows: the
x-axis points from the start position towards the goal position, the
z-axis points upwards and is orthogonal to the local x-axis, and
the y-axis is orthogonal to both local x-axis and z-axis following
the right-hand convention.

A robot with multiple DoFs uses a transformation system for
each DoF, but they all share the same canonical system.

B. Coupling Terms for Obstacle Avoidance

Early coupling terms for obstacle avoidance were formulated
as repulsive potential fields [7]. Potential fields suffer from local
minima and can be computationally expensive to calculate on
the fly. Alternatively, some coupling terms analytically formalise
the influence of an obstacle on the system’s behaviour [8]. As
depicted in Figure 2a, a point-mass system with position x ∈ R3

and velocity ẋ ∈ R3 has a heading θ ∈ SO(2) towards a point-
mass obstacle. To avoid a collision, the coupling term generates
a repulsive force:

C(·) = R ẋ θ̇, (6)

where R ∈ SO(3) is a π/2 rotation matrix around the vector
r = (xobstacle − x) × ẋ. The respective obstacle-system posi-
tion xobstacle − x and the system’s velocity ẋ define the plane
P ∈ R2 where the system is desired to steer away from the
obstacle with a turning velocity θ̇ defined as:

θ̇ = γ θ exp(−β |θ|), (7)

where γ and β respectively scale and shape the mapping θ → θ̇
defined in (7) and represented in Figure 2b.

Building on (6)–(7), human demonstrations were used to
retrieve the required parameters to circumvent two non-point
obstacles, particularly a sphere and a cylinder [9]. More recently,
coupling terms were formulated as independent neural networks
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Fig. 3. Dead-zone issue in the original (6)–(7) (black) and proposed (8) (red)
coupling terms. (a) (8) reacts for narrow headings towards the obstacle. (b)
(6)–(7) fails where (8) smoothly circumvents the point-mass obstacle (grey
circle).

(NNs) modelling the desired obstacle avoidance behaviour for
a sphere, a cylinder and a cube [10]. These methods do not
provide any strategy to avoid obstacles not observed in training
time, and they rely on markers identifying an obstacle’s bound-
aries. Their evaluations are conducted either in simulation or in
single-obstacle scenarios. Hence, their performance in realistic
scenarios is yet to be tested.

C. Discussion and Contribution

State-of-the-art on coupling terms modelling obstacle avoid-
ance behaviours suffers from four major limitations. First, as
illustrated in Figure 3, the analytical term (6)–(7) has a dead-
zone where the system becomes less reactive as the heading
towards the obstacle narrows, thus compromising the method’s
reliability. Second, there is no strategy to guide the behaviour’s
reactivity towards a preferred route to circumnavigate an obsta-
cle. For example, in the scenario depicted in Figure 1, there is
no constraint on the reactive behaviour preventing the system
from hitting the table. Third, when attempting to deal with
non-point obstacles, their performance drastically decreases for
novel scenarios due to the absence of global features identifying
the obstacle geometry during the learning process. Fourth, these
works learn the coupling terms from demonstration, which can
be time-consuming and prone to measurement noise.

All these issues are jointly addressed within the proposed
hierarchical framework, which hybridises the versatility of
DMPs and the strengths of learning techniques. Specifically, in
Section III, (6) (7) is reformulated at the action level as a con-
junction of coupling terms whose obstacle avoidance behaviour
is dead-zone free and can be guided. Then, in Section IV, the
formalised action level is exploited to learn via exploration
of the parameter space how to regulate the behaviour subject
to both the end-effector’s and obstacle’s geometric properties.
This work considers a unified system-obstacle low-dimensional
geometric descriptors identifying the relevant features to the
action level, thus allowing for enhanced generalisation even in
novel real-world scenarios.

III. COUPLING TERMS FOR DEAD-ZONE FREE AND GUIDED

OBSTACLE AVOIDANCE

The proposed hierarchical framework to learn and produce
generalisable obstacle avoidance behaviours regardless of the
scenario comprises three layers. The DMP-based action level is
formalised as a composition of two coupling terms which (i) gen-
erate robust obstacle avoidance behaviours, and (ii) guide these
in a particular direction of the task space. The parametrisation
needs of these terms allow for regulating their actuation scope
via reasoning at the decision level.

A. Inherently Robust Obstacle Avoidance

Current coupling terms for obstacle avoidance in the literature
suffer from dead-zones, i.e. a heading range towards the obstacle
for which the system becomes incoherently less reactive. Ideally,
the expected behaviour of those terms would be to become more
reactive as (i) the heading of the system is more aligned towards
an obstacle, and (ii) the system-obstacle distance is smaller.
Bearing these conditions in mind, the coupling term in (6)–(7)
is reformulated as:

COA(·) = R ẋ α sign(θ) exp

(
− θ2

ψ2

)
exp

(
−κ d2

)
, (8)

where α sign(θ) exp
(
−θ2/ψ2

)
addresses the first issue by shap-

ing the absolute change of steering angle as a zero-mean
Gaussian-bell function, and exp

(
−κ d2

)
tackles the second re-

quirement by regulating the coupling term effect according to a
parameter k and the system-obstacle distance d.

Figure 3 highlights the increase in robustness of the formu-
lated coupling term (8) in contrast to the original term (6)–(7).
While the original coupling term (black curves) produces low
reactivity for narrow headings towards an obstacle, the dead-
zone free proposal (red curves) reacts the most (see Figure 3a).
This reformulation has a significant impact in the task space,
where (8) succeeds on a scenario where (6)–(7) fails to generate
an obstacle avoidance behaviour which does not collide with the
point-mass obstacle (see Figure 3b).

B. Guiding the Obstacle Avoidance Reactivity

The velocity vector ẋ of a point-mass system also represents
the system’s orientation. Consequently, ẋ plays a critical role
in determining both the actuation P-plane and the direction of
turning θ̇. Overall, the behaviour encapsulated in (8) consists
of turning to the opposite direction where the obstacle is with
respect to the system’s heading or velocity vector ẋ. Although
this reactive motion might be the safest behaviour in front
of an obstacle, there are many situations where guiding the
system towards a particular route might be of interest, such as
in constrained environments or when aiming for a trajectory
providing a minimum cost.

Given the influence of the system’s heading ẋ on the overall
obstacle avoidance reaction, it is natural to modulate ẋ to guide
the reactivity of (8) through a preferred route. Within the DMP
motion descriptor, this can be formulated through a coupling
term that creates an attractive forcing term to reduce the heading
error θ̂ between the current ẋ and a desired ẋd system’s direction
as:

CHG(·) = R′ ẋ α θ̂ exp
(
1 + κ d2

)
(9)

where R′ ∈ SO(3) is a π/2 rotation matrix around the vector
r′ = ẋ × ẋd, and the term α exp

(
1 + κ d2

)
ensures that (8) and

(9) act in counterphase when parameterised for the sameα andκ.
This is, (9) uniquely modifies the system’s heading when not in
proximity to obstacles, where (8) takes over the control to ensure
the system’s safety.

C. Coupling Terms Composition

Figure 4 depicts the significance of using (8) in conjunction
with (9) to perform route selection of obstacle avoidance. This
is formalised within the DMP in (1)–(2) as the composition of
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Fig. 4. Route selection for obstacle avoidance in (a) single and (b) multi-object
setups. Reactive avoidance (blue), one-time decision (red), two-times decision
(green).

coupling termsC(·) =
∑

i C
i

OA(·) + C i
HG(·), whereC i

OA(·) and
C i

HG(·) generate the corresponding forcing terms with respect
to the ith obstacle in the scenario. This composition allows, in a
single-obstacle scenario (see Figure 4a), to guide the reactive be-
haviour (blue trajectory) in a different direction (red trajectory)
by temporarily defining the initial desired heading towards the
upper part of the task space. The same applies to multi-obstacle
environments (see Figure 4b), where the system’s heading can
be modified at multiple decision points to obtain a preferred
route (green trajectory). In both scenarios, the actuation scope
of the coupling term for guiding the system was set manually for
illustration purposes. Alternatively, these decision points could
be defined by a task-dependant module.

D. Proof of Lyapunov’s Stability

The addition of coupling terms can imperil the inherent sta-
bility properties of DMPs [2]. Authors in [9] proved with Lya-
punov’s theory that the overall dynamical system remains stable
when the coupling terms generate a forcing term orthogonal to
the system’s velocity vector. The coupling terms formulated in
(8) and (9) satisfy this condition, therefore proving the global
stability of the proposed action level.

IV. LEARNING OBSTACLE AVOIDANCE FOR

NON-POINT OBJECTS

The set of coupling terms formalised in the previous section
efficiently generates guided collision-free trajectories for point-
mass objects, i.e. obstacles and systems. Nonetheless, objects
in real-world scenarios present different shapes and sizes. This
section details the encoding of objects as low-dimensional geo-
metric descriptors, which allows for (i) the design of a learning
module that regulates the action level to generalise over different
obstacle geometries while considering the system’s geometry,
and (ii) the use of heuristics to rapidly perform route selection
in constrained environments.

A. Superquadrics as Geometric Approximates

Objects obstructing the execution of a policy might present
different shapes and dimensions. This geometric diversity com-
plicates the design of an intelligent module able to generalise
obstacle avoidance behaviours across geometries [10]. This
work considers global features to approximate the geometric
properties of an object. One possible encoding strategy are
superquadrics [11], which have been used, among others, to ease
the computation of system-obstacle distances [12], and to gen-
erate repulsive potential fields [13]. Alternatively to these task
space applications, this work is interested in the low-dimensional

Fig. 5. Extraction of unified low-dimensional descriptors accounting for the
(a) end-effector’s and (b) obstacle’s geometry. (c) Ellipsoid (rose) fitting the
dilated obstacle cloud. (d) Relevant descriptor λ′ along the P-plane (red ellipse).

parametric encoding of such geometric approximate, which is
defined as:

F (x, y, z,λ) :

((
x

λ1

) 2
λ5

+

(
y

λ2

) 2
λ5

) λ5
λ4

+

(
z

λ3

) 2
λ4

, (10)

where F (·) defines whether a given 3D point (x, y, z) lies
inside (F < 1), outside (F > 1), or on the surface (F = 1)
of a superquadric described by λ = [λ1, . . . , λ5]. In particular,
(λ1, λ2, λ3) set the superquadric semi-axes lengths, and (λ4, λ5)
parameters define the superquadric shape.

The parameter vector λ can be estimated from a discrete
representation of the obstacle’s surface by minimisation of:

min
λ

N∑

i=1

(√
λ1λ2λ3 (F (xi, yi, zi,λ) − 1)

)
, (11)

where
√

λ1λ2λ3 penalises the fitting of large superquadrics.

B. Unified Low-Dimensional Geometric Descriptors

The process in (10)–(11) provides a geometrical descriptor λ
from a discrete representation of an object. However, it is of
interest to obtain a descriptor accounting for both the system’s
and obstacle’s geometry. Figure 5 schematises the extraction of a
unified obstacle-system low-dimensional geometric descriptor.
An approximate of the system’s geometry (see blue prism in
Figure 5a) is used to dilate [14], [15] the obstacle’s discrete rep-
resentation (see Figure 5b). The dilated obstacle representation
is then encoded using (11) while imposing λ4 = λ5 = 1, i.e.
restricting the superquadric to shape as an ellipsoid. Figure 5c
portrays the significance on the descriptor’s difference when
considering the raw obstacle representation (blue ellipsoid)
and its dilated version (rose ellipsoid). Interestingly, ellipsoids
hold the property that any random projection or section of
these results in an ellipse, providing a strategy to extract the
unified geometric features relevant to the obstacle avoidance
coupling term. This is, the P-plane defined by the respective
obstacle-system position xobstacle − x and the system’s heading
ẋ, intersects the unified geometric approximation. Thus, the
descriptor λ can be further reduced to λ′ = (λ′

1, λ
′
2) ∈ R2 such

that λ′ = g(λ) where g(·) : R5 → R2 maps an arbitrary vector
onto the P-plane. The resulting low-dimensional descriptor is
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an ellipse laying on the P-plane with semi-axis lengths λ′ (see
Figure 5d).

C. Geometry-Conditioned Parameter Regressor

Leveraging the unified low-dimensional descriptor λ′ from
Section IV-B, this section proposes a method to learn the cor-
respondence between λ′ and the non-independent parameters
(α, ψ, κ) of the coupling term, subject to a user-defined clear-
ance Δ, i.e. the minimum distance between the end-effector
and the obstacle. This multiple target regression problem is
formulated as a regressor chain (RC) [16], which defines an
ordered chainU = (Y1, Y2, Y3) of single target regressions. This
is, given an input vector h = {λ′,Δ}, the proposed RC-based
learning module is composed of three models: Y1 : h → κ ad-
justs the actuation span of the coupling term, Y2 : (h, κ) → ψ
regulates the relevance of the relative system-obstacle head-
ing, and finally Y3 : (h, κ, ψ) → α tunes the strength of the
behaviour. Each regressorYi is modelled as a NN which provides
a powerful strategy to learn and represent approximations to
non-linear mappings, and is suitable for reactive decisions due
to its rapid response. Considering the relevance of the input
features, each NN regressor is arranged with four layers; the
hidden layers are hyperbolic tangent sigmoid units, and the
output layer is a log-sigmoid to avoid negative settings of
the targets.

It should be noted that the regulation of the action level
formalised in Section III is conducted along the P-plane. As
explained previously in Section IV-A, this sub-space contains all
essential information to circumnavigate an obstacle and is effi-
ciently defined using the relative system-obstacle state. Namely,
changes in the obstacle avoidance scene such as different start
and goal positions, obstacle location and geometries do not alter
the encoding of the problem in the P-plane. Therefore, the pre-
diction capabilities of the designed RC-based learning module
extend to a wide range of setups, including in the presence of
multiple obstacles in the scene.

D. Route Selection via Heuristic Cost Rings

Real-world environments and physical systems constrain the
amount of feasible reactive behaviours. Exhaustively evaluating
all possible directions in SO(3) which satisfy these additional
constraints can slow the decision response. To ease the reasoning
complexity of the route selection problem, this work proposes a
twofold heuristic analysis called cost rings which (i) considers an
orthographic projection of the obstacle onto the YZ-plane ∈ R2

of the local frame, i.e. confining the direction space ω ∈ SO(2),
to then efficiently (ii) find the obstacle avoidance direction ωd

minimising a metric η(ω). The resulting direction ωd is used
with the coupling terms composition formulated in Section III-C
to guide the obstacle avoidance behaviour towards ωd.

The advantage of route selection via heuristic cost rings is
exemplified in Figure 6, where the path cost η(ω) is determined
according to three metrics: (i) the physical constraints imposed
by the table ηtable(ω), (ii) the length of the trajectory ηlength(ω),
and (iii) the robot’s workspace limit ηlimits(ω), such thatωd can
be found by minimisation of:

min
ω
ηtable(ω) + ηlength(ω) + ηlimits(ω), (12)

where ηtable(ω) = 1 if the end-effector would collide with the
table and 0 otherwise, ηlength(ω) ∈ [0, 1] is the normalised

Fig. 6. Route selection via heuristic rings. (a) Cost evaluation on the local
YZ-plane to penalise workspace limits, long trajectories, and collisions with the
table. Overall best direction is marked in magenta. (b) A reactive behaviour (blue)
would lead the system colliding with the table, whereas the guided behaviour
(red) generates the route with lowest cost.

trajectory length, and ηlimits(ω) = 1 if the end-effector would
move outside of its workspace and 0 otherwise. Figure 6a
illustrates these estimated costs rings and the resulting direction
ωd ∈ ω (magenta) with minimum cost. As depicted in Figure 6b,
using this reasoning to initially guide the behaviour enables the
system to avoid the obstacle in the direction with lowest cost
(red), whereas the non-guided reactive behaviour leads with
collision with the table (blue).

E. Convergence to Goal

The required path π̂ to avoid obstacles may be longer than
the pre-planned trajectory π, thus needing more time to fi-
nalise the encoded task. This fact is especially critical when
dealing with non-point objects as failing to account for this
can imperil convergence to the desired goal [10]. To ad-
dress this issue, this work regulates the DMP duration by
scaling τ = length(π̂)/length(π), i.e. an approximate of the
increase of trajectory length. Here, length(π̂) is estimated
with linear interpolation of the finite sequence of R3 points
{xs,x

1
p, . . . ,x

N
p ,gx}, where xs and gx are the start and goal

positions, and xi
p is the extreme point of the ellipse encoding the

i ∈ [1, N ] dilated obstacle’s geometry along its P-plane.

V. EXPERIMENTAL EVALUATION

The proposed framework has been evaluated in simulated en-
vironments and on a physical system. This section first explains
the training of the RC model via exploration of the parameter
space. Thereafter, it reports the performance and generalisation
capabilities of the proposed approach in familiar and novel
obstacle avoidance settings. Finally, this section details the
deployment of the proposed framework on an anthropomorphic
Franka Emika Panda arm engaged in a start-to-goal policy in the
presence of unplanned obstacles.

An extended illustration of the experimental evaluation
is documented in: https://youtu.be/lym5cCbjI3k ,
and the corresponding source code can be found in:
https://github.com/ericpairet/ral_2019 .

A. Training the RC-Based Learning Module

This work has designed a RC-based learning module to reg-
ulate the action level according to a unified obstacle-system
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TABLE I
PREDICTION ERROR ON EVERY SINGLE TARGET OF THE TWO MODELLED RC

ARCHITECTURES FOR THE TRAINING AND TEST DATASETS

descriptor λ′ and a possible clearance constraint Δ. The un-
constrained model is denoted as RC(λ′), while the constrained
model is referred to as RC(λ′,Δ). The training of these models
is conducted leveraging the knowledge of the action level to
create a synthetic dataset via exploration of the parameter space.
This is, given different obstacle avoidance scenarios, training
explores the parameters {α, ψ, κ} of the coupling term (8)
generating a collision-free trajectory.

Bearing in mind that the learning module uniquely regulates
the action level along its plane of actuation, 100 synthetic sce-
narios were created to simulate possible intersections between
a unified system-obstacle ellipsoid approximation and the actu-
ation plane P ∈ R2. This resulted in 100 ellipses parameterised
with semi-axis values λ′ = (λ′

1, λ
′
2) uniformly sampled in the

range 2.5 to 25 cm. Each of these sections was placed in
the middle of a one-metre length start-goal baseline. For each
scenario, a set of trajectories were generated using (8) with
a 50 × 50 × 50 grid of the parameters {α, ψ, κ}. Only those
input-target {(λ′

1, λ
′
2), (α, ψ, κ)} pairs involving a collision-free

trajectory were integrated into the dataset along with the result-
ing clearance.

The RC architectures were trained using a 70% of the syn-
thetic dataset. Each NN was trained independently using the
Levenberg-Marquardt algorithm with a random initialisation of
the weights and biases. The remaining 30% of the dataset was
used to test the performance of the trained RC models. Since
the aim of a RC model is to reduce the prediction error on every
single target [16], each model Yi was validated by computing
the normalised mean squared error (NMSE) on the training and
testing sets. As shown in Table I, the parameter prediction error
of the models reduces significantly when considering the clear-
ance in the input vector h. This is because the clearance allows
differentiating the influence of the targets among all possible
collision-free trajectories. It is worth noting that the performance
of the RC does not deteriorate when being evaluated on the
test set.

B. Experiments on Familiar Scenarios

The performance of both RC(λ′) and RC(λ′,Δ) models in
the P-plane space was evaluated for the same obstacle ge-
ometries as in the training dataset, i.e. 100 ellipses. For the
RC(λ′,Δ) model, the considered constraints on the clearance
were Δ = {0.05, 0.1, 0.15, 0.2, 0.25} metres. All six models
were evaluated with and without scaling the trajectory duration
τ according to its estimated length as explained in Section IV-E.
Overall, this led to the testing of the RC architecture under
12 different settings. Performance in the P-plane space was
evaluated for the metrics (i) number of collisions, (ii) minimum
distance to an obstacle (clearance), and (iii) distance to goal
(convergence). The obtained results over the 1,200 scenarios
are illustrated in Figure 7.

Fig. 7. (a) Clearance and (b) convergence of the avoidance behaviours gener-
ated in familiar scenarios, when scaling the trajectory duration (black plots) and
when not (red plots).

TABLE II
CLEARANCE, CONVERGENCE AND NUMBER OF COLLISIONS OF THE TRAINED

RC(λ′, 0.15) MODEL FOR 4,000 NOVEL SETTINGS

Fig. 8. Generalisation capabilities of the trained RC(λ′, 0.15) model in novel
settings. Parameters λ′ are extracted from the relevant section (red ellipse) where
the coupling term acts.

Figure 7a and Figure 7b respectively represent the clearance
to the obstacle and convergence to the goal for the 1,200 sce-
narios evaluated across the 12 settings of the RC architecture.
Overall, constraining the model with a desired clearance leads to
more bounded behaviours. However, as the clearance constraint
increases, the convergence rapidly deteriorates for those models
not scaling the trajectory duration (red boxes). Instead, when
scaling the time (black boxes), the convergence is at most of 3 cm
for the most constrained model RC(λ′, 0.25). This fact highlights
the importance of scaling the time when larger trajectories
are required. Indifferently from the model setup, none of the
1,200 conducted tests resulted with a trajectory colliding with
an obstacle. The remainder of the experimental evaluation is
conducted with the RC(λ′, 0.15) model and scaling the trajectory
duration according to its estimated length.
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Fig. 9. Panda arm engaged in a start-to-goal policy (blue trajectories) while modulating its behaviour (red trajectories). (a) Environment perception with unified
low-dimensional encoding of the system’s and obstacle’s geometry (rose ellipsoids). Proposed hierarchical framework dealing with (b) multiple obstacles in a
cluttered environment, and (c) an irregular obstacle.

C. Experiments on Novel Scenarios

Given the variety of obstacle avoidance scenarios that a
system may face in the real-world, the proposed RC(λ′, 0.15)
model was evaluated for its performance and generalisation
capabilities on scenarios not seen during the training process.
Notably, the approach was tested for its suitability to deal with
three-dimensional (3D) obstacles via the extraction of relevant
unified low-dimensional geometrical features laying on the
P-plane as described in Section IV-A.

Novel 3D scenarios were created by sampling the location
and dilated geometry of the obstacle randomly. The obstacle
was arbitrarily located along the x-axis between the start and
goal configurations preserving 5 cm of margin, and around the
baseline between −0.4 and 0.4 m along both the y-axis and
z-axis. The unified system-obstacle ellipsoid approximation had
random width, height and length within the spectrum 5 to 50
cm, leading to representative candidates of possible object ge-
ometries in real-world environments. This spectrum corresponds
to semi-axis values λ1, λ2 and λ3 laying in the range 2.5 to
25 cm. These boundaries also ensured that none of the extracted
low-dimensional features λ′ would result beyond the limits for
which the RC model was trained for.

A 1,000 novel 3D scenarios were created for the different
start-to-goal baselines of 0.5, 1.0, 1.5 and 2.0m along the x-axis
of the local frame, adding up to a total of 4,000 evaluations. The
semi-axis λ1 was limited to a maximum of 20 cm for the baseline
of 0.5 m to be consistent with the 5cm margin across experi-
ments. All environments required the action level to modulate
a start-to-goal policy to avoid collision and preserve the desired
clearance. Out of the 4,000 tests, 1,296 environments already
had the baseline in collision with the obstacle. The performance
of RC(λ′, 0.15) on the unseen settings was evaluated for the
metrics (i) number of collisions, (ii) clearance to an obstacle,
and (iii) convergence to goal. Table II summarises the extracted
metrics across the evaluation, and Figure 8 depicts the perfor-
mance of the proposal on some novel single and multi-obstacle
settings.

Results in Table II reflect the performance of the designed
RC(λ′, 0.15) model when dealing with 3D scenarios via their
section on the P-plane. The overall success rate is of 99.95%
on novel scenarios while providing, in average, a clearance
similar to the requested one of 0.15m and a close convergence
to the goal. This implies an enhancement of 31.75 times over
the success rate reported on known objects in [10]. However,

the performance of the approach is slightly compromised in
some scenarios, obtaining clearances of 6cm and convergences
up to 2.7cm. The proposed approach could not cope uniquely
with two scenarios out of 4,000, where the generated trajectory
penetrated 0.501 mm an obstacle of 40cm along the x-axis and
50cm along the y-axis and z-axis placed in the middle of a 0.5m
long baseline. Albeit these extreme scenarios for which more
data could be provided at training time, the proposed approach
has proved to generalise not only to different object sizes and
locations, but also to different start-to-goal baselines. Further
experimentation also showed the suitability of the framework
to deal with multi-obstacle scenarios (see Figure 8b). Since the
action level is referenced in a local frame (see Section II-A), the
performance of the framework does not deteriorate regardless of
the local frame’s pose in the task space. Within the local frame,
the outstanding generalisation capabilities are mainly due to
regulating action according to the relative system-obstacle state
defining the P-plane, and extracting relevant system-obstacle
low-dimensional geometrical descriptors.

D. Experiments on a Robotic Platform

The proposed hierarchical framework for obstacle avoidance
has been deployed on an anthropomorphic 7-DoF Franka Emika
Panda arm operated with OROCOS [17]. The DMP-encoded
system’s transient behaviour is converted to joint configurations
using a Cartesian inverse dynamic controller with null space
optimisation. The environment is partially observed with a
depth camera ASUS Xtion previously calibrated with Aruco
markers [18]. The acquired point cloud is processed applying
standard filtering techniques to segment the clusters describing
obstacles and the table. The partial observation of each obsta-
cle is dilated to also account for the system’s geometry (see
Section IV-B). The location of the table is used to constrain the
reactive behaviour along the upper part of the task space (see
Section IV-D).

As in [9], [10], the test-bed consisted of obstacles interrupting
a straight trajectory underlying a start-to-goal policy. However,
differently than [9], [10], the assortment of considered obstacles
had not been seen before. This included, but was not limited
to, regular objects, such as the cardboard box in Figure 1,
irregular objects, such as the pile of plastic bottles in Figure 9c,
and also aleatory combinations of them, such as the cluttered
environment with six obstacles in Figure 9a and Figure 9b. As
summarised in Table III, the robot engaged in the pre-planned
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TABLE III
CLEARANCE, CONVERGENCE, NUMBER OF COLLISIONS AND UNSATISFIED

CLEARANCES FOR THE PRE-PLANNED (PP.) AND MODULATED (MOD.)
START-TO-GOAL POLICIES ON THE REAL ROBOT

policy (blue trajectories) would impact with the obstacles. In-
stead, endowing the robot with the ability to modulate such
policy, allows the system to successfully circumvent all obstacles
with the desired 0.15m clearance while converging to the goal
(red trajectories).

The presented results demonstrate that the proposed hierarchi-
cal framework which (i) extracts relevant geometric descriptors,
(ii) uses them in the designed RC-based learning module to
(iii) regulate the DMP-based action level, endows a system with
the ability to modulate its behaviour in settings never seen before,
while stably converging to the goal.

VI. FINAL REMARKS

This letter has presented a biologically-inspired hierarchi-
cal framework which safely modulates an on-going policy to
avoid obstacles. The proposed approach follows a multi-layered
perception-decision-action analysis which (i) extracts unified
system-obstacle low-dimensional geometric descriptors, then
(ii) exploits them to rapidly reason about the environment
with a combination of heuristics and learning techniques, and
finally (iii) guides and regulates the obstacle avoidance be-
haviour with a conjunction of coupling terms modulating a
DMP-encoded policy. Experimentation conducted in synthetic
environments highlights this method’s generalisation capabili-
ties to confront novel scenarios at the same time of ensuring the
convergence of the system to the goal. Additionally, real-world
trials on an anthropomorphic manipulator demonstrated the
framework’s suitability to successfully modulate a policy in the
presence of multiple novel obstacles described by partial visual-
depth observations, while satisfying a user-defined clearance
constraint.

The proposed framework is not restricted to the presented ex-
perimental evaluation nor platform. Any robotic system follow-
ing a DMP-encoded policy can benefit from this work to safely
modulate its behaviour in the presence of unexpected obstacles.
Similarly to [7], collisions of the links can also be considered by
finding the closest geometric section on the robot to the obstacle,
and then modulating the kinematic null-space movement with
the proposed approach. An interesting venue for future work

is to modulate the system’s orientation policy to overcome an
obstacle, which, for instance, might have a significant impact
on a manipulator carrying a large bulk. Another interesting
extension of this work is learning route selection priorities in
cluttered environments, so systems can autonomously reason
about the most convenient direction to avoid an obstacle.
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8.2 Supplementary Material

In this section, we provide some in-detail discussion about the novelty of the proposed approach
in comparison to related methods in the literature (see Section 8.2.1), as well as prove the overall
stability of our approach (see Section 8.2.2).

8.2.1 Comparison to Previous DMP-based Obstacle Avoidance Methods

To better understand the contribution of the presented work, we first briefly revisit the previous
DMP-based obstacle avoidance methods in the literature [130, 82, 61, 142, 143], and then we
provide a theoretical and experimental comparison among approaches in Table 8.1.

The first DMP-based obstacle avoidance method in the literature formulated a coupling term
as a dynamic potential field, and controlled the kinematic null-space of the robot to also avoid
obstacles with the links of a robotic arm [130]. Importantly, their approach to consider the
manipulator’s links can be integrated in any of the coupling terms presented in the literature,
including our method. All posterior works, however, have just focused on the end-effector. The
local minima issue and the point-based assumption in [130] were tackled by authors in [82], by
extracting the obstacles’ bounding volume to shape the harmonic potential fields driving the
system. Heuristics were considered to overcome local minima in certain situations, yet without
guarantees. Another common concern of potential fields is that they require fine parametrisation.

To overcome the main limitations of potential field-based approaches, authors in [61] presented
an analytical form of a repulsive term in the heading space for point-based obstacles and
point-based systems. To address the point-based obstacle assumption while preserving the low
computational burden of such analytical formulation, recent works have leveraged from a
pre-processing stage. Authors in [142] learnt from human demonstrations the required coupling
term to avoid two different obstacles (a sphere and a cylinder). The generalisation capabilities
of this approach were not reported, and its applicability was not proven on a real platform.
Similarly, authors in [143] used human demonstrations to build independent NN-based
coupling terms for each of the three considered obstacles (a sphere, a cylinder and a cube).
This work was only tested in single obstacle scenarios, and similarly to the precedent
approach, the evaluation was limited to the obstacles used in the training set. A significant
drawback of these methods is their dependency on a huge set of high-quality data; a
marker-based motion capture system was used to accurately extract human-demonstrated
motions (human-hand as point-mass system) and identify the obstacles’ shape. More
importantly, these approaches do not demonstrate generalisation to novel obstacle geometries.
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Differently from previous approaches, the method we present is not restricted to the obstacles
observed in the training set because we approximate both the obstacle and the end-effector
shape as a low-dimensional geometric descriptor. We apply dilation [105, 66] to project the
end-effector geometric descriptor onto the obstacles’ descriptors. These dilated descriptors are
used to infer suitable action modulations with a learning-based technique, particularly a RC
of NNs. We ease the training of this NN-based RC by exploring the parameter space of the
coupling term, thus avoiding dependency on the time-consuming process of gathering quality
data from human demonstrations. Additionally, we propose a heuristic optimisation process to
find the preferred direction to avoid constraints violation. We evaluate our overall approach in
novel scenarios, i.e., obstacle’s locations and geometries not observed at training time, in both
single and multi-obstacle setups, and in both simulated and real-world experiments.

Table 8.1 provides a theoretical and experimental comparison among methods. From the
theoretical side, the analysed features are: (i) the type of coupling term, (ii) if they suffer from
local minima (LM) or dead-zone (DZ), (iii) the geometrical representation of the
obstacle (OBS) and end-effector (EE), and (iv) the relevant computation requirements,
pre-execution (PE) and during execution (DE). From the experimental side, most of these
works do not provide any source code, training data, nor trained models. In fact, the most
recent and related approaches [142, 143] do not have any online resource. As previously
discussed, these approaches depend upon a great amount of quality data (they employed a
total of 1,900 human demonstrations) and a marker-based identification of the obstacle
geometry (yet limited to three known obstacles). On top of that, one of these approaches has

THEORETICAL DETAILS EXPERIMENTAL DETAILS
(i) (ii) (iii) (iv) (v) (vi)

coupling LM/DZ OBS/EE PE/DE experiments failure
term geometry computation SS MS SR MR rate

[130] dynamic PF LM point/point none/PF 3 3 NR
[82] harmonic PF LM2 BV/point none/PF 3 3 3 3 NR
[61] analytic DZ point/point none/none 3 3 3 NR
[142] analytic DZ marker/point LbD/none 3 3 NR4

[143] NN none3 marker/point LbD/none 3 3 3/1894

This work hybrid1 none SQ/SQ FS/none 3 3 3 3 2/4000

Table 8.1: Comparison of the proposed approach with previous DMP-based obstacle avoidance
methods. PF: potential field. BV: boundary volume. SQ: superquadric. LbD: learning by
demonstration. FS: forward simulation of the parameter space. NR: not reported. 1analytical +
NN + heuristics to satisfy extra constraints. 2overcomes LM in certain conditions via heuristics.
3subject to the demonstrations. 4Uniquely evaluated with, at most, three known obstacles.
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not been even tested on a real platform. Consequently, taking everything into account,
reproducing their approaches for a thorough benchmark pointed out to be an unfeasible,
cumbersome task. Alternatively, we take as a comparison point the reported experimental
evaluation, namely: (v) the documented experiments (single obstacle in simulation (SS),
multiple obstacles in simulation (MS), single obstacle in real platform (SR), multiple obstacles
in real platform (MR) and (vi) the reported failure rate.

It is worth noticing that the latest work in the literature [143], despite limiting the evaluation
of their method to generalise to different obstacle locations with the three obstacles observed in
the training set, reported a failure rate of 3/189. This failure rate is 31.75 times higher than
the one we achieved (2/4000) with our overall hierarchical framework when testing it on novel
scenarios, i.e., not only different locations but also different obstacles geometries. Moreover, our
approach has been proven to work in real-world scenarios, for novel obstacle geometries and
locations, and for single and multi-obstacle setups.

8.2.2 Proof of Lyapunov’s Stability

The overall stability of the second-order time-invariant linear system driven by a forcing term
and several coupling terms (see (1)-(2)) is guaranteed as far as each of the terms fulfils the
stability criterion [104, 133, 69]. In this regard, stability proofs of DMP-based dynamical system
under the effect of both discrete and rhythmic forcing terms f(·) was presented in [69], while its
stability when applying coupling terms C(·) was proved with the Lyapunov stability theorem
in [142]. As shown next, the latter proof applies to both presented coupling terms in (8) and (9).

A DMP-based dynamical system in R3 driven by a forcing term f(·) and the two proposed
coupling terms COA(·) and CHG(·) can be written in a spring-mass-damper form as:

ẍ = Kx(g− x)−Dxẋ + f(·) + COA(·) + CHG(·), (8.1)

where as the system approaches the equilibrium point, i.e., t→∞, the phase term k → 0, thus
reducing the magnitude of the forcing term f(·)→ 0 (see (3) and (5) in the paper):

ẍ = Kx(g− x)−Dxẋ + COA(·) + CHG(·). (8.2)

The equilibrium point for this system is (x, ẋ, ẍ) = (g,0,0). To prove the stability of the
dynamical system, a Lyapunov function is formulated according the energy function of the
mass-spring-damper system:

V (x, ẋ, ẍ) = 1
2(g− x)TKx(g− x) + 1

2 ẋT ẋ. (8.3)
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According to the Lyapunov’s stability theorem, the system is guaranteed to be stable if
(i) V (x, ẋ, ẍ) > 0 for any state, (ii) V (x, ẋ, ẍ) = 0 at the equilibrium point, i.e.,
(x, ẋ, ẍ) = (g,0,0), and (iii) V̇ (x, ẋ, ẍ) < 0 for any state. While it is straightforward to see
that the formulated Lyapunov function satisfies the first two requirements, proving the latter
requires deriving V (x, ẋ, ẍ) and substituting for the system at the equilibrium point (8.2):

V̇ (x, ẋ, ẍ) = ∂

∂xV (x, ẋ, ẍ)T ẋ + ∂

∂ẋV (x, ẋ, ẍ)T ẍ,

= −(g− x)TKxẋ + ẋT ẍ,

= ẋT (−Kx(g− x) + ẍ),

= ẋT (−Dxẋ + COA(·) + CHG(·)),
= −ẋTDxẋ + ẋTCOA(·) + ẋTCHG(·),
= −ẋTDxẋ,

(8.4)

where given that Dx > 0 and the negative quadratic nature of V̇ (x, ẋ, ẍ), the third Lyapunov
requirement for stability is also proven. The latest step of the derivation is based on the fact
that ẋTCOA(·) = 0 and ẋTCHG(·) = 0; both coupling terms are composed of Rẋ (see (8) and
(9)), where by definition R ∈ SO(3) is a π/2 rotation matrix, thus making the proposed coupling
terms orthogonal to the velocity vector ẋ.
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Path Planning for Manipulation using
Experience-driven Random Trees

In this chapter, we tackle the challenge of generalising a prior experience with the proposition
that experiences are “decomposable” and “malleable”, i.e., parts of an experience are suitable to
relevantly explore the connectivity of the robot-task space even in non-experienced regions. Two
new planners result from this insight: ERT and its bi-directional version ERTConnect. These
planners adopt a tree sampling-based strategy that incrementally extracts and modulates parts
of a single path experience to compose a valid motion plan. We demonstrate our method on task
instances that significantly differ from the prior experiences, and compare with related state-
of-the-art experience-based planners. While their repairing strategies fail to generalise priors
of tens of experiences, our planner, with a single experience, significantly outperforms them in
both success rate and planning time.

All proposed work is described in detail in the following published journal article:

Title: “Path Planning for Manipulation using Experience-driven Random Trees”
Authors: Èric Pairet, Constantinos Chamzas, Yvan Petillot, and Lydia Kavraki
Journal: IEEE Robotics and Automation Letters
Volume: 6, Number: 2, Pages: 3295–3302, Published: 2021
DOI: 10.1109/LRA.2021.3063063

Multimedia: https://youtu.be/kD3A3Xs_psI
Open-source code: https://github.com/ompl/ompl/pull/783
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Path Planning for Manipulation using Experience-driven Random Trees
Èric Pairet1,2, Constantinos Chamzas2, Yvan Petillot1, Lydia E. Kavraki2

Abstract—Robotic systems may frequently come across similar
manipulation planning problems that result in similar motion
plans. Instead of planning each problem from scratch, it is
preferable to leverage previously computed motion plans, i.e.,
experiences, to ease the planning. Different approaches have been
proposed to exploit prior information on novel task instances.
These methods, however, rely on a vast repertoire of experiences
and fail when none relates closely to the current problem. Thus,
an open challenge is the ability to generalise prior experiences
to task instances that do not necessarily resemble the prior.
This work tackles the above challenge with the proposition that
experiences are “decomposable” and “malleable”, i.e., parts of
an experience are suitable to relevantly explore the connectivity
of the robot-task space even in non-experienced regions. Two
new planners result from this insight: experience-driven random
trees (ERT) and its bi-directional version ERTConnect. These
planners adopt a tree sampling-based strategy that incrementally
extracts and modulates parts of a single path experience to
compose a valid motion plan. We demonstrate our method on task
instances that significantly differ from the prior experiences, and
compare with related state-of-the-art experience-based planners.
While their repairing strategies fail to generalise priors of tens of
experiences, our planner, with a single experience, significantly
outperforms them in both success rate and planning time. Our
planners are implemented and freely available in the the Open
Motion Planning Library.

Index Terms—Manipulation Planning; Motion and Path Plan-
ning; Learning from Experience; Autonomous Agents

I. INTRODUCTION
A long-envisioned requisite for fully-autonomous robotic

manipulation is to endow robots with the ability to learn
from and improve through experiences. For example, con-
sider a robot on a shelf stacking task (see Figure 1). Such
a robot may frequently come across similar task instances
that result in similar motion plans. Despite the resemblance
among problems, the most common approach is to plan from
scratch; neither prior information nor recurrent computations
are leveraged to aid in solving related queries. This strategy
can lead to unnecessary long planning times. Instead, the
commonalities between instantiations should be considered as
prior knowledge at the planning stage. However, this is not
a trivial problem. The planner must reason over the relevant
features that allow for the generalisation of prior knowledge
even to notably different task instances.
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Fig. 1: Our planner can leverage a single path (experience)
computed in a particular task instance, e.g., “fetch the red
object” (left), to efficiently solve novel task instances (right)
that remarkably differ from the experience, e.g., in obstacles
(blue objects), shelf structural geometry and target locations.

Related work. Leveraging prior experiences for build-
ing motion plans efficiently has drawn special attention to
the learning and planning communities. Learning-based ap-
proaches infer the underlying task policy from a given set of
demonstrations, which is then used to retrieve task-related mo-
tion plans (e.g., [1]–[4]). Relevant features are extracted from
the demonstrations such that the learnt policy can generalise
to novel task instances. Although these methods are capable
of computing plans quickly by learning from experience, they
typically generalise poorly to task instances that significantly
differ from those observed a priori [5].

On coping with varying task instances while leveraging ex-
periences, sampling-based planning offers a promising venue
to generalise the a priori knowledge. Such a strategy is known
as experience-based planning. There are mainly two orthog-
onal approaches: (1) biasing the sampling into task-relevant
areas, and (2) exploiting previously computed motions. This
work is, in spirit, closer to the latter: leveraging prior motions.
Related work is discussed for both alternatives.

(1) Biasing the sampling involves guiding the exploration
towards task-relevant regions of the configuration space. A
common approach is to take advantage of geometric features
of the workspace to guide the sampling in the configuration
space (e.g., [6]–[10]). Strategies that bias the sampling can
significantly speed up queries, but they rely on identifying
familiar workspace features to infer relevant samples in the
configuration space. Therefore, their applicability is mainly
limited to task instances that resemble those observed a priori,
leading to a lack of generalisation to new environments.

(2) Using previously computed motions consists of storing
experienced motions in a library (e.g., [11], [12]) or jointly as a
graph (e.g., [13], [14]). These methods recall exact prior expe-

A visual aid about the experience-driven random trees planners can be
found in: https://youtu.be/kD3A3Xs_psI.
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riences to solve the current planning query. In Lightning [11],
the most relevant experience is retrieved based on the start-goal
proximity of a experience and the current query. The nearest
path is chosen to be repaired. The repair step employs the bi-
directional rapidly-exploring random tree (RRTConnect) to re-
connect the end-points of segments originated by variant con-
straints, e.g., obstacles. Differently, Experience Graphs [13]
build a roadmap of experiences to then search it using some
heuristics. In a similar vein, Thunder [14] creates a sparse
roadmap from all experiences, which is repeatedly queried
via A∗ until a valid path is found. If the graph does not
contain a valid path, candidate paths, if any, are considered for
repairing. The repairing invokes RRTConnect to reconnect the
disconnected states along the candidate paths. All these path-
centric approaches exploit prior motion plans in the exact con-
figuration they were experienced, i.e., “rigidly”. This leads to
poor performance when planning in non-experienced regions
of the robot-task space. Therefore, for these methods to work,
the library must contain a prior path that already resembles a
valid motion plan for the current planning problem. Con-
sequently, current experienced-based planners are dependant
on a vast and extremely relevant set of prior experiences to
counteract their lack of generalisation capabilities.

Contribution. In this work, we change the paradigm in
which prior path experiences stored in libraries of motions
are being used. Instead of exploiting prior motions “rigidly”
to preserve the invariant constraints, we use them in a
“decomposable” and “malleable” way to infer the next move
given a particular state of the robot in a task. With this
proposition, we present experience-driven random trees (ERT)
and its bi-directional version ERTConnect, two experience-
based planners capable of generalising a single prior motion
plan across significantly varied task instances. These planners
leverage a path experience by parts to iteratively build a tree
of micro-experiences, i.e., segments that resemble those in
the prior experience. Suitable micro-experiences result from
semi-randomly morphing different parts of the experience.
Such a strategy proves to be useful to efficiently explore the
connectivity of the robot-task space even in non-experienced
regions. Additionally, we discuss how to select the best candi-
date for our planner given a library of path experiences. Such
experience selection strategy enables the use of our planners
in frameworks that incrementally build libraries of experiences
by adding newly computed motion plans (e.g., [11], [14]),
as well as in systems that gather experiences from human
demonstrations (e.g., [15]–[17]).

The key insight of our approach is that prior experiences
are of a better use when leveraged in a “malleable” fashion,
oppositely to the common “rigid” usage of experiences. Thus,
contrary to prior work, the applicability of our planner goes
beyond task instances that closely resemble those observed a
priori. Empirical analysis demonstrates our planner’s ability to
leverage prior experiences efficiently and to generalise them
to distinguishably dissimilar task instances. In these challeng-
ing conditions, while related state-of-the-art experience-based
planners fail to exploit vast repertoires of prior path experi-
ences, our planner, with a single path experience, significantly
outperforms them in both success rate and planning time.

II. PROBLEM DEFINITION AND
APPROACH OVERVIEW

In this manuscript, we are interested in families of motion
planning problems that involve similar task instances and
thus, seek similar motion plans. The commonalities between
instantiations are of interest because they open the possibility
for a robot to leverage prior information about the task.
Enabling the robot to exploit such similarities would allow
it to efficiently solve tasks related to those seen a priori.

Consider a robot with configuration space Q ∈ Rn conduct-
ing a particular task, e.g., shelf stacking (see Figure 1). Let
Qobst ⊂ Q be the region of the configuration space occupied
by obstacles, and Qfree = Q \ Qobst be the collision-free re-
gion. Let q ∈ Q denote a particular robot configuration, and
α ∈ [0, 1] be a phase variable that indicates the progress on
the execution of a collision-free motion plan. Then, the state
of the robot in a motion plan is defined in the configuration-
phase space S = Q× R[0,1] as s = 〈q, α〉 ∈ Rn+1. The valid
regions in the configuration-phase are defined as:

Sfree = {〈q, α〉 ∈ S | q ∈ Qfree}. (1)

Let A be some prior information about the task. In this
work, we consider prior knowledge defined by a library of path
experiences A = {ξD1, ξD2, . . . , ξDj}, where each ξD is a
path (prior experience) solving a particular task instance. Paths
as priors are of particular interest since they can be acquired
over time from the robot’s planning solutions on similar task
instances, or from external sources, such as from a human
kinaesthetically guiding a robot through a task. Note that the
focus of this manuscript is experience-based planning, where a
set of prior path experiences A relevant to the current problem
is assumed to be provided. Therefore, given a library A, and
the start 〈qstart, 0〉 ∈ Sfree and goal 〈qgoal, 1〉 ∈ Sfree states, the
motion planning problem considered in this work seeks a plan-
ning process J : A → ξ capable to leverage A to efficiently
find a collision-free continuous path ξ : α ∈ [0, 1]→ Sfree that
connects ξ(0) = qstart ∈ Sfree to ξ(1) = qgoal ∈ Sfree.

Our approach to take advantage of a library of experiences
J : A → ξ is twofold. First, as discussed in Section IV-A, we
select a path experience ξD ∈ A suitable for the current plan-
ning problem. Then, we exploit the selected prior L : ξD → ξ
via our contribution: the experience-driven random trees plan-
ners ERT and ERTConnect presented in Section III. We
empirically demonstrate that, when using our planner, a unique
prior path suffices to solve other instances of the same task.

III. EXPERIENCE-DRIVEN RANDOM TREES

The ERT and ERTConnect planners are inspired by tree
sampling-based methods [18], [19]. Our planners, however,
iteratively leverage a single task-relevant prior path experience
by parts (segments, a.k.a., micro-experiences) to ease the
capture of connectivity of the space. Such micro-experiences
are semi-randomly morphed to generate task-relevant motions,
i.e., segments that resemble those in the prior (e.g., dotted
lines in Figure 2). The obtained motions are sequentially
concatenated to compose a task-relevant tree (see green tree
in Figure 3). This exploratory strategy aims at finding a trace
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along the tree edges, i.e., a sequence of local modifications on
the prior, that constitutes a continuous path ξ which satisfies
ξ : α ∈ [0, 1]→ Sfree, ξ(0) = qstart and ξ(1) = qgoal.

Noteworthy, our planners are designed to be agnostic to
distance metrics, as capturing proximity between two robot
configurations in a task is not trivial. Moreover, such met-
ric would potentially need to be designed for each task.
Therefore, instead of iteratively growing a tree from the
nearest configuration to a random sample (RRT-like [19]), our
experience-driven random trees iteratively branch-off (expand,
EST-like [18]) by concatenating the inferred motions. Like-
wise, to generate resembling motions, we deform the micro-
experiences such that no similarity metric is needed.

The core routine through which the planner exploits the
prior experience to generate task-relevant micro-experiences
is detailed in Section III-A, and its usage in a uni- and bi-
directional sampling-based planning strategy is presented in
Section III-B and Section III-C, respectively.

A. Inferring Task-relevant Motions from a Single Experience
For planning efficiently, we are particularly interested in

generating motions that are task-relevant in S, i.e., coherent
according to the robot state in a task. To that purpose, our plan-
ners leverage an experience by parts in a “malleable” fashion,
as opposed to the common “rigid” usage, to infer motions that
are likely to be relevant to different task instantiations.

Initially, our planners pre-process the given experience ξD
before exploiting it iteratively. Specifically, ξD is mapped onto
the current planning problem to obtain ξ′D, a path whose initial
and final configurations match the start and goal of the current
planning problem (see Figure 2). The computation of such
mapping ξD → ξ′D is detailed within the description of the
planners. Then, at each iteration, our planners leverage a part
(micro-experience) of the mapped experience ξ′D to infer suit-
able motions for the task. Generally, let ψD : α ∈ [αini, αend]
be a micro-experience from the prior spanning from αini
to αend such that ψD(α) = ξ′D(α) ∀ α ∈ [αini, αend] (e.g., red
segment in Figure 2). We denote the extraction of a micro-
experience from a prior as ψD = ξ′D(αini, αend), and say that
such segment has a phase span |ψDα| ∈ (0, 1].

Extracted micro-experiences are exploited to create task-
relevant motions. Formally, let ν : ψD → ψ ∈ R(n+1)×(n+1)

be a function that morphs a sequence of states onto another re-
gion of S. We formulate the support of this operation to be that
of an affine transformation of the form ψ = AψD +B, where
ψD(n+1)×k = 〈q̄Dn×k, ᾱD1×k〉 is a prior micro-experience
with k states, and ψ(n+1)×k = 〈q̄n×k, ᾱ1×k〉 is the generated
task-relevant segment. Specifically, we design A to be a shear
transform for its shape-preserving properties, and B to be a
translation of the segment into a region of interest. Formally,
then, this affine transformation modulates ψD as:
[

q̄
ᾱ

]
=

[
In×n λn×1
01×n |ψDα|

][
q̄D
ρ

]
+

[
bn×1 . . . bn×1
αini . . . αini

]

(n+1)×k
, (2)

where λn×1 is the shearing coefficient, bn×1 is a shifting
vector, and ρ = [0, ..., 1]1×k is a local reparametrisation of
ᾱD. Note that the phase of the generated segment ψ re-
mains ᾱ = ᾱD. Informally, Equation 2 translates and smoothly

Fig. 2: Illustrative example of Equation 2: generation of
resembling motions (dotted lines) by morphing the micro-
experience ψD with semi-random b (shift) and λ (shear) pairs.

deforms the micro-experience by adding up the increasing
amount of noise λρ + b, such that ψ(αini)− ψD(αini) = b
and ψ(αend)− ψD(αend) = λ + b. Therefore, specifying b and
λ enables the generation of new micro-experiences and their
mapping onto any region of interest in S. Figure 2 exemplifies
the affine morphing in Equation 2 with different parameters.
We detail the implementation of Equation 2 in Algorithm 1.

Algorithm 1: MORPH_SEGMENT(ψD, λ, b)
Input:
ψD: micro-experience of phase-span |ψDα| from αini
λ: shearing coefficient
b: shifting vector

Output:
ψ: morphed motion

1 for ρ← 0 to 1 do // Equation 2
2 α = ρ|ψDα|+ αini
3 ψ(α)← ψD(α) + ρλ + b
4 return ψ

We exploit the ability to morph parts of the mapped prior
path experience ξ′D to infer motions that are suitable to either
connect two particular states sinit and starg, or explore the best
way to continue the task from a given state sinit. These two
processes, and their interaction with Algorithm 1, are detailed
in Algorithm 2 and illustrated in Figure 3.

Connect (line 3 to 6): given two task-related configuration-
phase states sinit = 〈qinit, αinit〉 and starg = 〈qtarg, αtarg〉, we hy-
pothesise that a suitable connection may result from mapping
the micro-experience ψD : α ∈ [αinit, αtarg] between sinit and
starg. Thus, after extracting the relevant micro-experience from
ξ′D (line 4), the parameters b and λ of the mapping in Equa-
tion 2 are calculated such that the resulting micro-experience ψ
satisfies ψ(αinit) = qinit and ψ(αtarg) = qtarg (line 5 and 6).

Explore (line 8 to 11): given one task-related configuration-
phase state sinit = 〈qinit, αinit〉, we hypothesise that a suitable
continuation of the task is to apply a micro-experience similar
to that ψD ∈ ξ′D starting at αinit. For that, we first determine
which span of ξ′D to exploit by defining αtarg (line 8). An
appropriate αtarg depends on the direction in which ξ′D is being
exploited; we call it forward when exploiting the prior from
ξ′D(0) to ξ′D(1), and backward otherwise. Correspondingly,
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(a) ERT: first iteration example (b) ERT: explore example (c) ERT: connect example

Fig. 3: Experience-driven random trees iteratively build a tree (green) of micro-experiences. At each iteration, an existing node
in the tree is randomly selected to either explore the most suitable continuation of the task (e.g., snapshots in (a) and (b)), or
connect to another known state (e.g., the goal state as in (c) (ERT), or a state in the other tree (ERTConnect)). In both cases,
relevant motions (dotted red) are generated by morphing micro-experiences (red) of the prior path experience ξ′D (see Figure 2).

SAMPLE_SEGMENT_END(αinit) defines αtarg as:

αtarg =

{
min(αinit + U(ωmin, ωmax), 1), if forward
max(0, αinit − U(ωmin, ωmax)), if backward

(3)

where U(ωmin, ωmax) draws a sample from a uniform distribu-
tion to determine the phase span of the extracted segment. The
bounds ωmin and ωmax are discussed in Section IV-B. Next,
the corresponding segment ψD : α ∈ [αinit, αtarg] is extracted
from the mapped prior path experience ξ′D (line 9), and b is
computed for the resulting micro-experience ψ to start at sinit,
i.e., to satisfy ψ(αinit) = qinit (line 10). Finally, to generate a
task-relevant motion from qinit, the shearing coefficient λ is
sampled randomly within some bounds to morph the micro-
experience ψD into a similar motion (line 11). In particular,
λ is drawn from a uniform distribution U(−ε|ψDα|, ε|ψDα|)
such that, at each iteration, the maximum allowed deformation
is proportional to the segment’s phase span. This implies that
the accumulated deformation along any possible path ξ found

Algorithm 2: GENERATE_SEGMENT(sinit, starg, ξ′D)
Input:
sinit: required segment configuration-phase start
starg: required (if any) segment configuration-phase end
ξ′D: prior experience

Output:
ψ: generated segment
send: end configuration-phase of the segment ψ

1 〈qinit, αinit〉 = sinit
2 if not starg = ∅ then // connect
3 〈qtarg, αtarg〉 = starg

4 ψD ← ξ′D(αinit, αtarg)
5 b← qinit − ψD(αinit)
6 λ← qtarg − (ψD(αtarg) + b)

7 else // explore
8 αtarg ← SAMPLE_SEGMENT_END(αinit)
9 ψD ← ξ′D(αinit, αtarg)

10 b← qinit − ψD(αinit)
11 λ← U(−ε|ψDα|, ε|ψDα|)
12 ψ ← MORPH_SEGMENT(ψD, λ, b)
13 send ← 〈ψ(αtarg), αtarg〉
14 return 〈ψ, send〉

by our planners does not exceed, with respect to ξ′D, the user-
defined malleability bound ε (see discussion in Section IV-B).

Overall, the method GENERATE_SEGMENT(·) enables the
presented experience-guided random tree planners to leverage
a single path experience at different levels of granularity, and
map task-relevant segments onto any region of interest in the
configuration-phase space. In that way, our planner aims at
composing a valid path from a suitable sequence of morphed
micro-experiences. The remaining of this section discusses the
usage of such routine in our uni-directional (ERT) and a bi-
directional (ERTConnect) tree sampling-based techniques.

B. Uni-directional Experience-driven Random Trees (ERT)

Algorithm 3 provides the pseudo-code of the uni-directional
version of our planner. The algorithm seeks finding a continu-

Algorithm 3: ERT(sstart, sgoal, ξD)
Input:

sstart and sgoal: start and goal configuration-phase
ξD: prior experience

Output:
ξ: collision-free path

/* map ξD onto current problem */
1 〈ξ′D, ∅〉 ← GENERATE_SEGMENT(sstart, sgoal, ξD)
2 if IS_VALID(ξ′D) then
3 return ξ′D

/* sampling-based ξ′D exploitation */
4 T .init(sstart)
5 while not STOPPING_CONDITION() do

/* node selection */
6 sinit ← T .select_node()

/* micro-experience generation */
7 starg ← ∅
8 if ATTEMPT_GOAL() = True then
9 starg ← sgoal

10 〈ψ, starg〉 ← GENERATE_SEGMENT(sinit, starg, ξ′D)

/* tree extension */
11 if EXTEND(T , ψ, sinit, starg) 6= Failed then
12 if GOAL_REACHED(starg) then
13 return PATH(T )
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Algorithm 4: EXTEND(T , ψ, sinit, starg)
Input:
T : tree of previously generated micro-experiences
ψ: new generated micro-experience
sinit and starg: start and end configuration-phase of ψ

Output:
outcome of the tree extension attempt

1 if IS_VALID(ψ) then
2 T .add_vertex(starg)
3 T .add_edge(ψ, sinit, starg)
4 return Advanced

5 return Failed

ous path from a start sstart to a goal sgoal configuration, given a
related path experience ξD. The planner firstly maps the entire
prior experience ν : ξD → ξ′D onto the current planning prob-
lem (line 1); note that the output of GENERATE_SEGMENT(·)
(Algorithm 2) is a segment ψ that spans from αini = 0 to
αend = 1, thus we rename it ξ′D. If ξ′D is not valid (line 2), the
planner proceeds to exploit ξ′D to generate task-relevant micro-
experiences. The planner follows a three-step procedure (node
selection, segment sampling, and tree extension) until the stop-
ping condition is met (line 5). A node sinit is selected from the
tree T with probability P (node) = 1

w(node)+1 (line 6), where
w(·) is a weighting function that penalises the selection of a
node according to the number of times that it has already been
selected. This weighted sampling strategy seeks a uniform
selection of all nodes over time, thus promoting a first depth
exploration of the task phase α. From the selected node sinit,
the tree is expanded using segments that resemble those in
the prior experience ξ′D. With probability p, the expansion
of the tree attempts to connect sinit with sgoal, whereas with
probability (1 − p) an explore expansion is done towards a
semi-random configuration starg (line 7 to 10). Algorithm 2,
previously explained in Section III-A, details the extraction
of suitable segments under these two different cases. The ex-
tracted segment is used to attempt expanding the tree (line 11)
following Algorithm 4. If the segment is valid, it is integrated
into the tree. Note that, as discussed in Section III-A, the
appended segment is a motion whose shape resembles that
of the related micro-experiences in the prior experience, not
a straight line. Finally, if the incorporated (valid) segment
reaches the goal, the path is returned (line 12 and 13).

C. Bi-directional ERT (ERTConnect)

The principles of leveraging from a prior experience by
generation of task-relevant micro-experiences can also be em-
ployed in a bi-directional fashion. The proposed bi-directional
planning scheme resembles, in spirit, that of the RRTCon-
nect [19], i.e., to simultaneously grow two trees, one from the
start configuration and the other from the goal configuration,
aiming to find a solution by connecting both trees. ERTCon-
nect, however, includes the peculiarities of our experience-
based planning approach. As shown in Algorithm 5, the
planner firstly maps the prior path experience ν : ξD → ξ′D
onto the current planning problem (line 1). If ξ′D is not valid

Algorithm 5: ERTConnect(sstart, sgoal, ξD)
Input:

sstart and sgoal: start and goal configuration-phase
ξD: prior experience

Output:
ξ: collision-free path

/* map ξD onto current problem */
1 〈ξ′D, ∅〉 ← GENERATE_SEGMENT(sstart, sgoal, ξD)
2 if IS_VALID(ξ′D) then
3 return ξ′D

/* sampling-based ξ′D exploitation */
4 Ta.init(sstart)
5 Tb.init(sgoal)
6 while not STOPPING_CONDITION() do

/* node selection */
7 sinit ← Ta.select_node()

/* micro-experience generation */
8 〈ψ, starg〉 ← GENERATE_SEGMENT(sinit, ∅, ξ′D)

/* tree extension */
9 if EXTEND(Ta, ψ, sinit, starg) 6= Failed then

10 if OTHER_EXTREME_REACHED(starg) then
11 return PATH(Ta)

/* micro-experience generation */
12 snear ← Tb.nearest_neighbour(starg)
13 〈ψ, starg〉 ← GENERATE_SEGMENT(snear, starg, ξ′D)

/* tree connection */
14 if EXTEND(Tb, ψ, snear, starg) 6= Failed then
15 return PATH(Ta, Tb)

16 SWAP(Ta, Tb)

(line 2), the planner proceeds to exploit ξ′D to compute a
solution. The planner simultaneously grows two trees, one
rooted at sstart and the other at sgoal (line 4 and 5). At each
iteration, until the stopping criterion is met (line 6), a node of
the active tree Ta is selected via weighted selection (line 7) to
explore the space via a task-relevant micro-experience (line 8).
If the active tree is extended successfully with the generated
segment (line 9), we first check whether the end of the motion
has reached the other extreme (line 10). This implies that a
path has been found before the trees connected, either by Ta
reaching the root of Tb or the other way around, in which
case the path is returned as a solution (line 11). Otherwise,
the node of Tb nearest to starg is selected (line 12) to attempt
to connect both trees with a task-relevant segment (line 13).
For such nearest neighbour query, we consider the Euclidean
distance between the configuration components (without the
phase). If the extension is successful, the corresponding path
is returned (line 14 and 15).

IV. USING ERT AND ERTCONNECT

In this section we discuss some details on using the pro-
posed experience-driven random trees planners.
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A. Selecting a Prior from a Library of Experiences
A robot might have at its disposal a library A of task-

relevant path experiences. As our planners exploit a unique
prior path experience ξD to solve other instances of the same
task, our current selection criteria ξD ∈ A is to pick the prior
that resembles the current planning query the most. Intuitively,
if a solution to the current planning problem lies in the
neighbourhood of a prior experience, the invariant robotic
constraints encoded in the experience itself, such as self-
collisions and joint limits, are more likely to prevail and thus,
ease the planner’s computations. Inspired by the experience
selection in [11], we estimate such resemblance by ranking
the experiences for their similarity to the start and goal of the
planning query. This is, the prior experience ξD selected to
feed the proposed experience-based planner is such that:

ξD = arg min
ξDi∈A

dist(ξDi(0), qstart) + dist(ξDi(1), qgoal), (4)

where qstart and qgoal are the start and goal configurations of
the current planning problem, and dist(·) is a function that
estimates the Euclidean distance between configurations in Q.

We verified the approach to select a unique prior from a
library of experiences described in Equation 4 experimentally;
despite it led to good results, the topic merits further attention.

B. Planner’s Parameterisation
Next, we review the parameters of the presented planners:
• p - probability of attempting to connect the tree to the

goal (only in ERT). This parameter should be set small
to allow the planner explore the space. Default: p = 0.05.

• ωmin and ωmax - lower and upper phase span bounds of the
extracted segments. Indirectly, these parameters delimit
the length of the motions added in the tree to explore the
space. Default: ωmin = 0.05 and ωmax = 0.1.

• ε - malleability bound to delimit the amount of mor-
phing applied to the micro-experiences. Intuitively, this
parameter defines a volume (tube) around ξ′D where the
planner can explore for a solution. Default: ε = 51×n
(large enough to cover the entire robot’s kinematic range).

Our planners’ default parameters are non-optimised for
a particular planning problem, but left generic to succeed
in many scenarios provided a relevant path experience. The
planners’ behaviour can be adjusted by tuning, namely, ωmin,
ωmax and ε. As our planner discards motions that are not
entirely valid, large phase spans might endanger the ability
to build a tree. However, in scenarios with few obstacles, ωmin
and ωmax can be set large to speed up planning computations.
Also, lowering ε can speed up computations, as the tree growth
would be more guided around the mapped experience ξ′D. The
lower ε, the more dependant the planner is on the suitability
of the provided experience as the probabilistic completeness
is compromised. Knowing the level of dissimilarity between
the experience and the current problem might aid in tuning ε
to trade growth guidance and space exploration.

V. EXPERIMENTAL EVALUATION
The proposed experience-guided random trees have

been implemented in the Open Motion Planning Library

(OMPL) [20] and evaluated on the Fetch robot [21] in a
shelf-stocking task. Fetch is a humanoid robot with a 7-DoF
arm attached on a sliding torso, thus requiring to plan in
an 8-DoF configuration space. Our experiments are designed
to measure the generalisation capabilities of our planner in
scenarios that involve different levels of dissimilarity between
prior experiences and task instances (see Section V-A). The
considered task instances include synthetic and real-world
scenarios (see Section V-B).

A. Experimental Setup

Our experimental setup considers a varied instance set of the
challenging problem of reaching a target object in a shelving
unit, specifically in a synthetic 4-tier (see Figure 4) and a
narrower real 5-tier shelving unit (see Figure 5). Task instances
in these scenarios not only present variability on the location
of the shelving unit (±90◦ around the robot) and the robot’s
initial position (±10cm), but also on the location of the target
object and the obstacles within the shelving unit.

To further evaluate the generalisation capabilities of the
proposed experience-based planner, we introduce some addi-
tional variability across the experimental setup. This is, we
compute with RRTConnect a total of 100 experiences from
different task instances; them all at the synthetic shelving
unit, with target objects in the middle shelf and no obstacles.
These scenarios are discarded for the rest of the evaluation.
Then, these experiences are used to evaluate the planner in
four scenario sets that involve increasing dissimilarity levels
between experiences and planning queries:
• Set 1: 200 instances with target objects in the middle shelf

without obstacles (synthetic). Note that these instances
resemble those used to compute experiences.

• Set 2: 200 instances with target objects in the middle shelf
with the presence of obstacles (synthetic).

• Set 3: 200 instances with target objects in three different
shelves with the presence of obstacles (synthetic).

• Set 4: 120 instances with target objects and obstacles in
the middle shelf (real-world).

The four sets of task instances are used to benchmark our bi-
directional ERTConnect planner against RRTConnect [19] and
the most representative experience-based planners that employ
motions as prior information of the task, i.e., Thunder [14]
and Lightning [11]. Note that these two frameworks are
double-threaded with a bi-directional ‘retrieve and repair’ (RR)
and ‘plan from scratch’ (PFS) module. Similarly, for a fair
comparison, we embed our ERTConnect in a double-threaded
framework which runs RRTConnect in parallel to PFS. The
reported results indicate the contribution of the RR (plain bar)
and PFS (stripped bar) modules in solving the planning queries
separately, and the required planning time jointly (plain bar).

In this work’s context, where we consider novel tasks
instances in varied scenarios, optimising each planner’s param-
eters across queries is not possible. Optimal parametrisation
requires extensive testing in each scenario set, and thus know-
ing the scenarios in advance, among other planning aspects.
Therefore, all planners are used in their default OMPL set-
tings, and ours is set to the non-optimised default parameters

Chapter 9: Path Planning for Manipulation using Experience-driven Random Trees 81



PAIRET et al.: PATH PLANNING FOR MANIPULATION USING EXPERIENCE-DRIVEN RANDOM TREES 7

Fig. 4: Success rate and solving time results for the benchmark on synthetic scenarios, where the Fetch Robot needs to reach
a target object in the shelving unit subject to multiple variations of the task instances. From left to middle-right column, case
studies from less to more experience-instance dissimilarity: Set 1, Set 2 and Set 3. The picture on the right depicts a particular
instance of Set 3 which, differently from the considered prior experiences, involves target objects (red cylinders) located at
any of the three shelves, a different relative location of the shelving unit, as well as obstacles (blue cylinders).

specified in Section IV-B. The benchmark is run on an Intel i7
Linux machine with 4 3.6GHz cores and 16GB of RAM. The
performance of the three experience-based planners in each
instance set is assessed under libraries with {1, 5, 50, 100}
prior experiences. The experiences provided to each planner
are the same. Each query is repeated 50 times with a planning
timeout of 20 seconds. All in all, the conducted benchmark
involves a total of 468,000 planning queries.

B. Results on Synthetic and Real-world Scenarios

The results of the benchmark on Set 1, Set 2 and Set 3 are
summarised in Figure 4, whilst those in the real-world Set 4
are depicted in Figure 5. As it can be observed, provided a high
number of experiences that are close to the current planning
problem (i.e., Set 1 with the library of 100 experiences), all
planners achieve a high success rate with solving time of the
order of milliseconds. This behaviour is expected as, given
the experience-query similarity and the library size, it is likely
that there exists a prior experience that nearly resembles the
current query, thus involving minimum repairing.

As the dissimilarity between experiences and queries in-
creases, experience-based planners need to generalise the prior
information more broadly to succeed. Intuitively, the need
of generalisation arises when a reduced number of demon-
strations in the library needs to cover varied task instances
(x-axis within each experimental set), or when the current
planning requirements differ significantly from the set of
available experiences (variability across experimental sets).
The outcome of our benchmark points out that the performance
of Thunder’s RR module drops abruptly by either dissimilarity
factor, whereas the Lighting’s RR is not as affected by the
lack of experiences as it is when dealing with significantly
different task instances. The poor generalisation of these
frameworks across instances is due to the rigid usage of prior
experiences. Our approach, instead, by leveraging experiences

in a malleable way, achieves a success rate and solving time
that significantly improves that of Lightning and Thunder.

The importance of generalising prior information is partic-
ularly noticeable in the real-world task instances in Set 4,
where the queries differ from the experiences not only on
the location of the shelving unit and the target object, but
also on the narrower geometry of the whole shelving unit,
the height of the shelf where the target object is located at,
and the presence of obstacles. Under these challenging task
variations and when accounting with only one demonstration,
our approach outperforms by a factor of approximately 3.7

Fig. 5: Success rate and solving time results for the bench-
mark on real-world scenarios (Set 4), where the Fetch Robot
needs to reach a target object by generalising prior ex-
periences to a narrower shelving unit geometry, to differ-
ent locations of the shelving unit, robot’s initial position
and target object, as well as to the presence of obstacles.
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and 37.1 times the RR module of the Lightning and Thun-
der frameworks, respectively. Similarly, those frameworks
are respectively outperformed by our approach by a factor
of 4.7 and 8.9 times when considering 100 experiences.
Notably, while these planners time out most of the trials,
our method required only a quarter (with one demonstra-
tion) and less than an eight (with multiple demonstrations)
of the planning time budget to find a solution.

The ability to generalise prior information not only limits
the level of experience-query dissimilarity that a planner can
cope with, but also the number of experiences that are required
to achieve high performance. As an example, providing 50
experiences to Thunder’s RR, 5 to Lightning’s RR and 1
to our ERTConnect leads to approximately the same success
rate of 80% in Set 1. Achieving such a performance in the
other experimental sets with Lightning and Thunder is not
possible even with a library of 100 experiences, whereas
our approach surpasses such performance when selecting a
unique experience from a library of only 5 experiences. This
implies that our ERTConnect planner, by generalising prior
experiences more efficiently, significantly outperforms current
experienced-based planners using libraries of motions in the
literature even when provided with notably fewer experiences.

VI. DISCUSSION
In this manuscript, we have presented two new experience-

based planners: the uni-directional experience-driven random
tress (ERT) and the bi-directional ERT (ERTConenct). These
two methods are tree sampling-based planners that iteratively
exploit a single prior path experience to ease the capture of
connectivity of the space. At each iteration, a segment of the
prior is extracted and semi-randomly morphed to generate a
task-relevant motion. The obtained motions are sequentially
concatenated to compose a task-relevant tree, such that a trace
along the edges constitutes a solution to a given task-related
planning problem. Thorough experimentation against current
experienced-based planners using libraries of motions in the
literature [11], [14] demonstrates our planner’s significant
superior performance in a wide range of task instances.

We have shown that, similarly to related work [11], [14], our
planner can be used in parallel with a planning from scratch
strategy to guarantee probabilistic completeness. Therefore,
when multi-threading is an option, a planning from scratch
thread should be considered, as well as multiple instantia-
tions of our planner with a set of varied experiences that
maximises space coverage. In the future, we plan to explore
the convenience of different transformation supports to infer
relevant micro-experiences subject to intrinsic task and robot
constraints; for instance, early tests demonstrate our planners’
suitability to leverage experiences in SO(3) using quaternions.
Another promising line for future work is the extension of
our planner to leverage multiple experiences simultaneously,
such that the local exploration is conducted with the most
suitable segment in the library. Likewise, such a strategy
would potentially allow the planner adapting to changes in
the planning context, e.g., dynamic obstacles and moving goal
configurations, as well as solving novel tasks by combining
experiences of multiple different tasks.
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9.2 Supplementary Material

In this section, we provide some additional discussion on the results presented in the paper (see
Section 9.2.1), as well as some details on employing experience-driven random trees in SO(3) (see
Section 9.2.2) and optimising the usage of our planner in multiple threads (see Section 9.2.3).

9.2.1 Path Quality

Besides the advantages on computation time and success rate that our planner offers in contrast
to traditional and other experience-based planning techniques, the presented experience-driven
random trees ERT and ERTConnect planners also compute paths of better quality. Similar to
the experiments in the paper, we benchmark our bi-directional ERTConnect planner against
RRTConnect [91] and the most representative experience-based planners that employ motions
as prior information of the task, i.e., Lightning [17] and Thunder [37]. We consider the solutions
obtained in the experimental set 1 of the paper when using 100 experiences in the library. This
analysis includes a total of 37,086 trajectories across the four planners. As shown in Figure 9.1,
we analyse the average length and smoothness of the solutions computed by each planner.
RRTConnect, Thunder and Lightning show a similar performance; this behaviour is expected
as the underlying planning process of all these planners is the RRTConnect. In contrast, the
solutions computed with our ERTConnect are significantly both shorter and smoother.

Figure 9.1: Comparison of the solutions computed by RRTConnect [91], Lightning [17] and
Thunder [37] in contrast to our ERTConnect planner.

9.2.2 Micro-experience Malleability in SO(3)

We originally presented the experience-driven random trees ERT and ERTConnect planners for
robotic manipulation planning. However, the concept of micro-experience (de)composability and
malleability is not strictly restricted to Rn planning spaces. We detail our approach in SO(3)
using quaternions as a generic representation of any rotation.
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Let the orientation of a robot in a motion plan be defined in the configuration-phase space
S = SO(3)×R[0,1] as s = 〈q, α〉. Then, the affine transformation described in (2) and Algorithm
1 for a SO(3) space is:

q̄4×k = q̄D4×k ◦ [b4×1 . . .b4×1]4×k ◦ f(q1, λ, ρ)4×k,

ᾱ1×k = ᾱD,
(9.1)

where b4×1 is a quaternion to rotate the whole prior micro-experience ψD, λ4×1 is a quaternion
to indicate the desired shearing, ◦ denotes the Hadamard (element-wise) quaternion product,
and f(q1, λ, ρ) computes a quaternion trajectory by interpolating from the identity quaternion
q1 = [0, 0, 0, 1]T to λ at each local phase ρ = [0, ..., 1]1×k. Analogously to (2), (9.1) deforms the
micro-experience by incrementally applying a b ◦ f(q1, λ, ρ) rotation, such that the difference
between ψ(αini) and ψD(αini) is b, and that between ψ(αend) and ψD(αend) is b ◦ f(q1, λ, 1).

Then, generating new micro-experiences in Algorithm 2 consists in determining b and λ to map
segments of the prior experience onto any region of interest in S. For the connect routine, this is:

b = qinitψD(αinit)-1,

λ = qtarg(ψD(αtarg)b)-1,
(9.2)

whereas for the explore routine, this is:

b = qinitψD(αinit)-1,

λ = U(ε|ψDα|),
(9.3)

where ε is a user-defined malleability bound that, intuitively, determines the volume
(neighbourhood) around the provided ψD that the planner can explore, and U(ε|ψDα|) samples
a unit quaternion uniformly within distance ε|ψDα| of the identity quaternion. The
malleability upper bound ε in (9.3) is scaled by the segment’s phase span |ψDα| such that the
accumulated deformation along the resulting path does not exceed ε.

Note that all operators employed in this section refer to quaternion operators. For the
interpolation denoted as f(·) in (9.1), as it starts from the identity quaternion, we use a
simplified version of the spherical linear interpolation (SLERP) [153]. For the uniform
bounded sampling U(·) in (9.3), we use a similar strategy as that used in the open motion
planning library (OMPL) [161] to sample a quaternion within a certain distance of another.

9.2.3 Selecting Multiple Priors from a Library of Experiences

As discussed in the paper, when multi-threading is an option, not only a planning from scratch
module should be considered to ensure completeness guarantees, but also multiple instantiations
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of our planner with a set of varied instances. Ideally, this set of experiences should capture
distinctive topological cases of the same task such that minimum repairing is required and,
consequently, reduce the required planning time as well as increasing the success rate. Formally,
let g(·) be a function that measures the performance of the overall multi-thread planning system.
Then, given a library of prior path experiences A = {ξD1, ξD2, ..., ξDj} relevant to the current
problem, we seek the subset Bk ⊂ A that maximises the performance of the overall multi-thread
planning system with k threads. We denote the optimisation objective as:

arg max
Bk

g(Bk) s.t. |Bk| = k. (9.4)

As explicitly computing (9.4) for novel planning problems would prohibitively require solving
the problems in advance, we instead attempt to approximate g(·) with metrics. In particular,
we analyse four strategies that aim at retrieving the optimal Bk by instantiating k threads with:

• M1: the best experience as ranked by the selection criteria (4) in the paper.

• M2: the first k best experiences as ranked by the selection criteria (4) in the paper.

• M3: the best k experiences as seen across prior motion plans.

• M4: the best experience as ranked by the selection criteria (4) in the paper and its k − 1
best partnering experiences as seen across prior motion plans.

The methodsM3 andM4 guide the selection of Bk with the performance of the prior experiences
in the prior motion plans. This approach builds on the hypothesis that the set of task instances E
used to retrieve the path experiences in A are representative to future instantiations. Therefore,
as part of the offline process of building the library of experiences A, we include, for each
experience, a reference to the k − 1 partnering experiences that maximise g(·). For the particular
case of g(·) measuring success rate, (9.4) is computed as:

arg max
Bk

1
|E|

∑
e∈E

P(mt_planner(Bk, e) == success) (9.5)

= arg max
Bk

1
|E|

∑
e∈E

P


 ⋃
ξDi∈Bk

planner(ξDi, e)

 == success

 (9.6)

= arg max
Bk

1
|E|

∑
e∈E

1−
∏

ξDi∈Bk

P(planner(ξDi, e) == failure)

, (9.7)

where mt_planner is the multi-thread planning system with k instance of our experience-driven
random trees ERT or ERTConnect planners.
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We benchmark the different approaches for selecting multiple priors from the library following the
same experimental setup as in the paper. We provide the library with a total of 10 experiences.
Then, with these 10 experiences, we evaluate the performance achieved with single-threaded
planning as described in the paper (MO), and the different experience selection methods for
multi-threaded planning (M1, M2, M3 and M4). Each method is evaluated in the four sets
of scenarios defined in the paper (Set 1, Set 2, Set 3 and Set 4 ), which involve increasing
dissimilarity levels between experiences and planning queries. Figure 9.2 depicts the comparison
between methods across the four sets of scenarios when employing a different number of threads.
As it can be observed, M1 is generally the worst approach to select multiple priors from the
library; despite using k times the best-ranked experience, all planner instances explore the
same region of the space. A boost of performance on the overall multi-thread planning system
is achieved when using the k first best-ranked experiences (M2), as it allows each planner
instance to explore different, yet similar to the problem, parts of the space. Leveraging the pre-
computed references to guide the selection of experiences (M3 andM4) also provides some extra
performance for the overall system, especially when using M4 in a higher number of threads.

Figure 9.2: Performance comparison of single-thread planning (M0) and multi-thread planning
with different approaches to select multiple experiences from the library (M1, M2, M3 and
M4). Each bar plot depicts the performance of the methods in the scenario sets (Set 1, Set 2,
Set 3 and Set 4 ) described in the paper.
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Critical Review - Closing

In this part of the thesis, we have investigated two different strategies that generalise prior
information, in the form of trajectories, to varied and significantly dissimilar task contexts. We
started exploring strategies to extend the generalisation capabilities of policy-encoded behaviours
to the presence of obstacles. Then, motivated by our findings, we formulated a sampling-based
planning scheme that iteratively exploits a single prior path experience to ease the capture of
connectivity of the space. To conclude this part, we provide a summary of the key results and
discuss how the findings compare to those in the other parts of this thesis.

10.1 Results

Our efforts on exploiting prior information for efficient motion synthesis has resulted in two pieces
of work. Each has been supported with experimental evaluation, in both synthetic environments
and real-world robotic platforms. In particular, we provided the following results:

Chapter 8 We demonstrated our method extends the capabilities of DMP-encoded policies to
safely adapt behaviour in the presence of obstacles in real-time. Extensive
benchmark results highlighted the robustness and generalisation capabilities of the
proposed approach regardless of the obstacle avoidance scenario. Finally, we
demonstrated the suitability of our approach for robotic systems operating in
challenging real-world environments, generalising obstacle avoidance behaviours to
novel scenarios, even when those involve multiple obstacles, or are uniquely
described by partial visual-depth observations.

Chapter 9 We demonstrated our ERT and ERTConnect planners offer a novel strategy to
experience-based planning, which is able to cope with task instances that
significantly differ from the prior experiences. We benchmarked our approach
against relevant state-of-the-art planners; while related work fails to generalise
priors of tens of experiences, our planner, with a single experience, significantly
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outperforms them in both success rate and planning time. In this benchmark, we
also included challenging real-world scenarios that showed the suitability of our
approach for real-world robotic systems.

10.2 Discussion

Our work in the direction of generalising experiences to enrich the range of behaviour encoded
in a library has resulted in two notable contributions:

Chapter 8 A hierarchical framework capable of safely modulating an ongoing DMP-encoded
policy to avoid obstacles. Such capability is significantly relevant to the robotics
community, given that DMPs are widely adopted in many robotic systems to learn
task-relevant motions and to reproduce them with minimal generalisation
capabilities. Thus, our work provides a strategy for these systems to extend their
autonomous operation in contexts that include obstacles.

Chapter 9 Two new planners: the uni-directional experience-driven random trees (ERT) and
its bi-directional version ERTConnect. These planners are extremely relevant to
the community as, to the best of our knowledge, their underlying modus operandi is
the less prior-requiring, and best well-performing experience-based planners in the
literature. Also, we have discussed how to extract a suitable experience for such
planners from a library of task-relevant motions.

Importantly, the proposed algorithms are not restricted to the presented experimental evaluation
nor robotic platform. Any robotic system can benefit from our contributing algorithms to
compute motion plans quickly by generalising prior knowledge to varied task instances. Both
pieces of work have been open-sourced. Specifically, the ERT and the ERTConnect algorithms
have been contributed in the OMPL for them to be of use to the robotics community at large.

Up to this point, the developments in this thesis frame robotic applications from which there
exists a-priori information. In Part II [123, 5], we assumed similar enough task contexts that
could be addressed with off-the-shelf policy encoded behaviours. In this part, we have
enhanced the motion synthesis capabilities to succeed in leveraging prior information in
significantly dissimilar tasks contexts. Next, in Part IV, we investigate the applicability of our
findings in challenging, ever-changing planning problems that lack prior information.

We have discussed some directions for future work in the corresponding manuscripts. Among
them, we are particularly keen on the possibility of extending our contributions to cope with
multiple behavioural samples simultaneously. We elaborate on this thought in Chapter 15.



Part IV

GUIDING SYNTHESIS VIA ONLINE
BEHAVIOURAL ABSTRACTIONS
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Critical Review - Opening

Leveraging from behavioural abstractions has proved to be a powerful approach to rapid motion
synthesis for tasks experienced a priori. At this point, we have explored such a strategy to address
(i) similar tasks by directly bootsrapping behaviour (see Part II [123, 5]), and (ii) significantly
dissimilar tasks by generalising behaviour (see Part III [124, 125]). The aim in this part of the
thesis is to study the applicability of some of the findings introduced earlier to solve efficiently
challenging path planning problems from which, mostly, there is no available prior knowledge.

11.1 Objectives and Contribution

There are some classes of planning problems whose instantiations are highly variable, thus
complicating the pre-computation of relevant behavioural features. To motivate this fact, we
consider a challenging ever-changing planning problem: mobile base navigation, in unknown
environments, and in face of uncertainties. From a planning point of view, this is a remarkably
hard problem as (i) the initially undiscovered environment is uniquely revealed in the
proximity of the robot’s exteroceptive sensors, (ii) the robot’s manoeuvrability is constrained
by its dynamics, and (iii) the robot’s localisation, sensing and motion model suffer from
uncertainties. All these constraints pose a complex, uncertain and high-dimensional problem in
the belief space that is intractable with traditional planning from scratch strategies. Therefore,
to enable a robot to navigate in such hostile environments, we need to formalise efficient online
motion synthesis strategies. We present two notable contributions to this objective:

Chapter 12
(first)

A multi-layered planning strategy capable of solving complex, uncertain, and high-
dimensional problems online. We formalise a whole abstraction pipeline that projects
the problem on a low-dimensional continuous support to retrieve a lead trajectory
that hints at relevant navigation behaviour in the belief space.

Chapter 12
(second)

Efficient evaluation of uncertainties that, along with the multi-layered planner,
aids in making the problem tractable with: (1) recurrent pre-computation of
environmental uncertainties, and (2) efficient state validation in the belief space.
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11.2 Methodology

To tackle the challenge described above, we propose an uncertainty-based framework for
mapping and planning feasible motions online with probabilistic safety guarantees. The
proposed approach deals with the motion, probabilistic safety, and online computation
constraints by: (i) incrementally mapping the surroundings to build an uncertainty aware
representation of the environment, and (ii) iteratively (re)planning trajectories to a goal state
that are kinodynamically feasible and probabilistically safe through a multi-layered
sampling-based planner in the belief space. As described next, all contributions in this
interdisciplinary framework are related to motion synthesis.

The multi-layered planning scheme within the proposed framework is built on the idea of
problem abstractions. In particular, abstracting the problem online onto a known support
allows us to induce some structure in such a highly-unstructured problem. Our planning
scheme is two-layered. A first layer abstracts the problem on a low-dimensional and
deterministic space to rapidly compute a lead, i.e., a trajectory that hints at relevant
navigation behaviour. Specifically, we consider the support of this projection to be the
workspace, enabling for on-the-fly computation of the lead using the RRT* planner. Then, in a
similar vein as our planners in Chapter 9 [125], our scheme’s second layer exploits the
computed lead to guide the connectivity search towards relevant parts of the belief space. This
exploration includes evolutionary heuristics to induce an adaptive lead-driven bias to the SST
planner’s search. Such heuristics ensure completeness guarantees despite biasing the search.

The multi-layered planning strategy enhances the focus of the search on relevant areas of the
high-dimensional ever-changing space. However, the amount of time needed by a planner to find
a solution is also highly dependant on the ability to quickly assess the validity of a state. State
validity checking is generally a highly demanding computation process, and even more in face
of uncertainties. To support the proposed multi-layered planner, we pose the stochastic state
validity checking challenge as a process that can be approximated via abstraction. In particular,
we project the continuous belief-space on a discrete support of variable resolution to efficiently
compute the probabilistic collision between an uncertain map and uncertain states.
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Online Mapping and Motion Planning under
Uncertainty for Safe Navigation in Unknown
Environments

In this chapter, we tackle the challenge of safe autonomous navigation in completely unknown
environments. This is not a trivial task as robotic systems operating in these hostile
environments must account for motion, localisation and sensory constraints, and their
associated uncertainties, to plan safe navigation actions. Our approach is an uncertainty-based
framework that incrementally maps and plans online, via an abstraction of the ongoing
problem, feasible motions with probabilistic safety-guarantees. We demonstrate the properties
of this framework via in-depth empirical analyses in simulation. Furthermore, real-world
in-water experimental evaluation on a nonholonomic torpedo-shaped autonomous underwater
vehicle and simulated trials in the DARPA Subterranean Challenge 2019 scenario on a
quadrotor unmanned aerial vehicle illustrate the efficacy of the method, as well as its
suitability for real-world systems with limited on-board computational power.

All proposed work is described in detail in the following published journal article:

Title: “Online mapping and motion planning under uncertainty for safe navigation in
unknown environments”

Authors: Èric Pairet, Juan David Hernández, Marc Carreras, Yvan Petillot, and Morteza
Lahijanian

Journal: IEEE Transactions on Automation Science and Engineering
Pages: 1–23, Published: 2021
DOI: 10.1109/TASE.2021.3118737

Multimedia: https://youtu.be/I5X_QFKDpeI

95

https://youtu.be/I5X_QFKDpeI


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Online Mapping and Motion Planning Under
Uncertainty for Safe Navigation

in Unknown Environments
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Marc Carreras , Member, IEEE, Yvan Petillot , Member, IEEE, and Morteza Lahijanian , Member, IEEE

Abstract— Safe autonomous navigation is an essential and
challenging problem for robots operating in highly unstructured
or completely unknown environments. Under these conditions,
not only robotic systems must deal with limited localization
information but also their maneuverability is constrained by their
dynamics and often suffers from uncertainty. In order to cope
with these constraints, this article proposes an uncertainty-based
framework for mapping and planning feasible motions online
with probabilistic safety guarantees. The proposed approach
deals with the motion, probabilistic safety, and online computa-
tion constraints by: 1) incrementally mapping the surroundings
to build an uncertainty-aware representation of the environ-
ment and 2) iteratively (re)planning trajectories to goal that
is kinodynamically feasible and probabilistically safe through a
multilayered sampling-based planner in the belief space. In-depth
empirical analyses illustrate some important properties of this
approach, namely: 1) the multilayered planning strategy enables
rapid exploration of the high-dimensional belief space while
preserving asymptotic optimality and completeness guarantees
and 2) the proposed routine for probabilistic collision check-
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ing results in tighter probability bounds in comparison to
other uncertainty-aware planners in the literature. Furthermore,
real-world in-water experimental evaluation on a nonholonomic
torpedo-shaped autonomous underwater vehicle and simulated
trials in an urban environment on an unmanned aerial vehicle
demonstrate the efficacy of the method and its suitability for
systems with limited onboard computational power.

Note to Practitioners—Emergent robotic applications require
operating in previously unmapped scenarios. This article presents
a unified mapping–planning strategy that enables robots to
navigate autonomously and safely in harsh environments.

Index Terms— Field robotics, online mapping, online motion
planning under uncertainty, safe autonomous navigation in
unknown environments, sampling-based motion planning.

I. INTRODUCTION

AUTONOMOUS robots have been increasingly employed
to assist humans notably in hazardous or inaccessible

environments in recent years. Examples include rescue mis-
sions in disaster response scenarios [7], in-water ship hull [31]
and wind turbine inspections [51], and deep underwater and
space exploration [4], [74], among many others. A fundamen-
tal requirement for a robot engaged in any of these applications
is to be adept at navigating autonomously through highly
unstructured and hostile environments. However, this is not
a trivial task due to a limited or complete lack of prior knowl-
edge about the environment in which the robot has to operate.
This implies that the robot has to base its decision-making
on onboard sensors despite their limited accuracy. In addition,
the robot itself might suffer from poor localization, as well
as restricted and uncertain maneuverability. Therefore, even
though challenging, it is essential to jointly consider all these
motion and sensory constraints, as well as their associated
uncertainties, when planning for navigation actions. This prob-
lem becomes particularly more challenging in safety–critical
missions where the robot’s safety must be ensured at all times.

Although there exist alternative methodologies addressing
each of the abovementioned issues individually, limited atten-
tion has been devoted to the autonomous navigation problem
in unknown environments as a whole [44]. The classical
algorithms known as simultaneous localization and mapping
(SLAM) enable a mobile robot to concurrently build and use
a map to estimate its location [17]. These algorithms rely
on identifying distinctive landmarks, which can bound the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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uncertainty of both the environment representation and the
robot localization. Nonetheless, even for scenarios rich in
features, there are always some residual uncertainties. More
recently, online motion planning frameworks have been devel-
oped to empower a mobile robot to compute navigation actions
in unexplored environments while accounting for the system’s
motion capabilities, e.g., [11], [21], [27]–[29], [68], [76], [80].
These approaches, however, do not cope with any source of
uncertainty and employ ad hoc heuristics that lack quantified
safety guarantees. The few attempts to ensure safety through
probabilistic methods, such as [12], [35], [71], are generally
computationally expensive, built on strong assumptions, and
commonly suppose a complete prior environment knowledge.
Therefore, they are unsuitable for applications requiring online
computations to deal with unknown environments.

In this context, our previous framework guaranteed (in com-
pliance with a user-defined minimum probability of safety) the
robot’s safety when navigating through unexplored environ-
ments [55]. The underlying strategy consisted of an iterative
mapping–planning scheme capable of continuously modifying
the vehicle’s motion plan toward the desired goal according
to the incremental environmental awareness. At any time,
the resulting motion plan was guaranteed to be feasible and
safe in face of localization, mapping, and motion uncertain-
ties. Despite the promising results achieved with this itera-
tive mapping–planning scheme, its underlying formalization
had some limitations. Namely, the framework was exclu-
sively tailored to cope with a low-dimensional robot (three
degrees of freedom (DoFs)) navigating in an unknown, sym-
metrically structured, 2-D workspace. The initially proposed
mapping–planning scheme and its constituent components
would scale poorly when dealing with systems and scenarios
of higher complexity. More demanding problems exacerbate
the curses of dimensionality and computational load to guar-
antee probabilistic safeness in face of uncertainties. Such a
challenge motivated the development of this follow-up work
to extend the framework’s capabilities to suit the requirements
of a larger group of robotic systems and environments.

Building on our previous mapping–planning scheme [55],
the main contribution of this article is threefold.

1) Multilayered planning strategy capable of rapid search
in high-dimensional belief spaces, with asymptotical
optimality and probabilistic completeness guarantees.

2) Probabilistic map fusion that efficiently retrieves envi-
ronmental uncertainties in form of a cumulative map,
while dealing with overlapping local submaps.

3) Probabilistic collision checking routine, which rapidly
evaluates the validity of a state subject to uncertainties
by trading the tightness of the safety bound for compu-
tational efficiency, while accounting for the tail events.

Our new contributions in the framework’s key constituent
components are supported with rigorous theoretical devel-
opment and thorough experimental evaluations. These novel
advancements allow for faster online motion planning and
more efficient evaluation of uncertainties. Consequently,
the improved framework is now capable to compute nav-
igation actions online for high-dimensional systems and
more challenging unknown environments while providing

safety guarantees. To the best of our knowledge, this is the first
generic architecture capable of jointly dealing with kinody-
namic and probabilistic constraints in unknown environments
online. Both the precedent and new framework are analyzed
and compared in multiple scenarios with different interesting
real-world1 and simulated2 physical systems. The experimental
results demonstrate the suitability of the proposed method
to address the challenge of probabilistically safe autonomous
navigation in unknown environments while being suitable for
systems with limited onboard computational power.

The remainder of this article is organized as follows.
Section II provides a comprehensive review of the liter-
ature and the corresponding contribution of this article.
Then, Section III formally defines the considered problem.
In Section IV, an overview of the framework is presented,
and then, the mapping and planning components are detailed
in Sections V and VI, respectively. The description of the
framework is followed by a thorough analysis of its key
constituent features and its performance and capabilities as
a whole in Section VII. Finally, this article concludes with a
discussion in Section VIII.

II. RELATED WORK

This section gives a brief overview of prior work on plan-
ning under kinodynamic constraints and planning under uncer-
tainty, as well as frameworks for online mapping–planning.
Finally, this section discusses all contributions of this work
with respect to the latest related literature.

A. Planning Under Kinodynamic Constraints

Planning under kinodynamic constraints deals with the
challenge of computing trajectories that are feasible according
to the vehicle’s motion capabilities. This problem is commonly
formulated as finding a trajectory between two points through
the system’s state space. The robotics literature offers various
approaches to tackle this problem.

One strategy is to represent the continuous state space
as a lattice space, i.e., a graph where edges correspond
to a reduced set of precomputed motion primitives. Then,
the motion planning problem can be efficiently solved using
graph search algorithms. For the particular case of a car-like
system, the motion primitives can be defined as a set of
lines and arcs to build a geometric state lattice [16], [67].
These approaches can find the shortest path, but the transition
between segments presents abrupt changes in angular velocity,
which could only be achieved by a system capable of infinite
angular acceleration. More complex lattice space definitions
allow the consideration of more restrictive concatenation rules
and richer sets of primitive motions, e.g., [20], [62], at the cost
of more memory usage and more computationally expensive
queries. Even though planning in lattice spaces has proven
to be suitable for many applications, it requires the crafting
of a set of motions such that the resulting lattice offers,

1A mission through a real breakwater structure with an autonomous under-
water vehicle (AUV) can be seen in: https://youtu.be/dTejsNqNC00

2A mission in the DARPA Subterranean Challenge 2019 scenario with an
unmanned aerial vehicle (UAV) can be seen in https://youtu.be/I5X_QFKDpeI
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at least, one suitable solution to the planning problem. Some
works in the learning community have addressed this difficult
and time-consuming task with data-driven techniques [14].
However, the resulting set of motions still represents a very
limited range of the real dynamic capabilities of the robot. This
is undesirable in applications where the environment is not
known in advance, and where having the entire dynamic range
of motions available for planning can be critical to finding a
suitable solution. All in all, lattice-based methods struggle with
planning in high-dimensional state spaces.

To deal with kinodynamic constraints, sampling-based
motion planners offer great opportunities, e.g., [32], [36], [38].
Most sampling-based planners, however, lose their asymp-
totic optimality guarantees when a steering function does not
exist in the system’s kinodynamically constrained state space.
To cope with this limitation, there are different assumptions
and heuristics that can be applied at the expense of longer com-
putational times. For example, Webb and van den Berg [78]
proposed a version of the asymptotic optimal RRT (RRT*)
that can deal with kinodynamic constraints of systems with
linearisable dynamics [78]. If the system’s dynamics are not
linearisable, asymptotic optimality can be obtained in any
planner by augmenting the dimensionality of the state space to
account for the search cost [25]. However, this strategy implies
solving the planning problem repeatedly to improve the cost
of the solution at each iteration, consequently being unsuitable
for applications with online requirements. Finally, the stable
sparse RRT (SST) planner offers asymptotically near-optimal
guarantees by means of a shooting approach, which consists of
expanding the tree from the node with the lowest cost within
a neighborhood of predefined δ-radius [41].

Planning in high-dimensional spaces with multiple con-
straints poses a challenge for classical planners and, typi-
cally, results in long computation times if a solution can
be found at all. In such problems, a common approach to
boost performance is via a multilayered planning scheme.
The key idea is to leverage from a lead to guide (warm-
start) the search. In this regard, an interesting approach is
the incremental trajectory optimization for motion planning
(ITOMP) algorithm, which interleaves planning and optimiza-
tion; the planner is given a fixed time budget to find a
solution, which is then used as a warm-start for the opti-
mizer [58]. Work in [63] and [64] introduced a synergistic
three-layered planner: the high-level planner uses discrete
search to initially determine those candidate regions (from
a decomposed representation of the environment), which
might contain part of the final solution; a low-level plan-
ner employs a sampling-based motion planner to find a
solution; and a middle layer updates the candidate regions
according to the considered constraints. However, the pro-
posed combination of planners does not guarantee asymp-
totic optimality, and the discrete planner becomes slow for
high-dimensional problems. Palmieri et al. [57] presented the
Theta*-rapidly exploring random tree (RRT) scheme, which
first uses the Theta* path planner to compute a lead path,
which is then employed to bias the search of the RRT
planner [57]. This approach, however, lacks asymptotic opti-
mality guarantees, given that the second planner is an RRT.

More recently, a multilayered approach based on the RRT*
as a lead planner and the SST as the final planner has been
proposed in [76]. The final planner’s search space is strictly
constrained around the lead path, raising concerns about the
completeness guarantees of the overall architecture.

B. Planning Under Uncertainty

An essential capability for any autonomous robot is to oper-
ate in the presence of uncertainty [13]. Sources of uncertainty
relevant to autonomous systems fall into four types [39].

1) Uncertainty in Localization: The robot’s location
is uncertain with respect to the environment. This
issue is particularly critical in robots operating in
GPS-denied environments or for systems suffering from
low-accuracy state estimation.

2) Uncertainty in Motion (Dynamics): The future robot
state cannot be predicted accurately, either because of
discrepancies between the considered and the real sys-
tem’s dynamic behavior or due to limited precision in
the system’s command tracking.

3) Uncertainty in the Environmental Awareness: The robot
has inexact or incomplete information about its sur-
roundings (e.g., obstacle location). This issue can arise
from inaccuracies in the a priori map, or imperfect and
noisy exteroceptive sensory capabilities.

4) Disturbances in the Operational Environment: The robot
is subject to external factors, such as wind, atmospheric
turbulences, or water currents, which makes the robot
deviate from the planned trajectory, thus compromising
the reliability of deterministic path planning techniques.

This section scrutinizes relevant planning strategies dealing
with any of the three first sources of uncertainty. Given the
scope of our work, terrain traversability analysis methods
(e.g., [19], [24], [54]) are excluded from this review.

One approach that is popular among existing planners is
based on discrete Markov processes. This strategy models the
evolution of the system in the environment and generates a
policy over the approximated Markov states. Examples of such
motion planners include stochastic motion roadmap (SMR) [5]
and incremental Markov decision process (iMDP) [33]. These
methods have shown to be effective and provide optimality
guarantees in terms of the probability of reaching the desired
goal; however, they assume perfect knowledge about the envi-
ronment. Works such as [47] have extended these techniques
to partially unknown environments. Nonetheless, their large
computational times remain the main hurdle in applications
with fully unknown environments or requiring online planning.

Another approach to deal with uncertainties in planning is
by means of feedback controllers and sampling-based plan-
ners. Van Den Berg et al. [75] proposed the linear quadratic
Gaussian (LQG) motion planning method, which finds the best
path simulating the performance of LQG on all extensions
of an RRT [75]. This idea was later applied in roadmaps to
propose the feedback-based information roadmap (FIRM) [1].
This method, though, relies on full a priori awareness of the
environment to explore the belief space offline and then to
quickly perform queries online. Consequently, this strategy
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is not suitable for planning applications where the a priori
information about the environment, if available, is not fully
informative. A similar strategy is used in [2] for simultane-
ous localization and planning. Alternatively, Sun et al. [73]
presented the high-frequency replanning (HFR) architecture,
a strategy that leverages from an LQG and a multithread RRT,
allowing to continuously replan in the face of alterations
in the robot or environment space, while accounting for
uncertainties. However, the asymptotic optimality guarantees
of such a method can only be assured in multithreaded
implementations.

An alternative approach to dealing with uncertainty is
the chance-constraint strategy. In these methods, instead of
maximizing the probability of success, the objective is to
find a path that satisfies a minimum safety probability con-
straint. The challenge in incorporating this method in planners
lies in the computation of the safety probability over plans.
In [9], linear chance constraints are combined with disjunctive
linear programming to perform probabilistic convex obsta-
cle avoidance. This concept was extended and integrated
into a sampling-based planner, leading to the chance con-
strained RRT (CC-RRT) [45] and the CC-RRT* [46]. These
approaches evolve the system’s dynamics in an open-loop
fashion, hence growing the uncertainty unboundedly forward
in time. To improve accuracy, linear chance constraints were
applied after propagation of the system’s state conditioned
on the precedent states being collision-free [59]. Such a
strategy is commonly referred to as truncating the distribution
estimating the system’s state, and its usage in planning led
to the CC-RRT*-D planner [43]. The advantage of chance-
constraint-based methods is that satisfying plans can be com-
puted quickly, making them desirable for online applications.
They are, however, built on strong assumptions that result in
overly conservative calculations and rely on the prior knowl-
edge of a convex environment. Nonetheless, chance-constraint
methods are still widely used in the planning community to
deal with localization, motion, and environmental uncertain-
ties, e.g., [12], [71].

In recent years, planners based on various discretization
methods have been developed to deal with limited computa-
tional power or online planning requirements in face of uncer-
tainty. Majumdar and Tedrake [48] proposed a precomputed
library of funnels to efficiently estimate the system’s kinody-
namic and uncertainty propagation in 3-D environments [48].
However, library-based approaches consider a reduced set of
the real system’s capabilities that can endanger the efficacy of
the planner. Another approach in favor of performance consists
of approximating the computation of the probability of colli-
sion to a discrete support [55], [71]. This strategy truncates the
infinite expansion of the belief in a bounded patch considered
to contain a large portion of the belief’s probability mass.
In our previous work [55], all uncertainties were projected
onto discrete support, referred to as kernel, whose resolution
resembled the optimal one for online mapping applications.
Although considering discrete support for the computation of
the probability of collision allows for quick calculations, none
of the works using such technique actually normalizes the
calculations for the probability mass laying outside the patch,

i.e., tail events. Therefore, they cannot offer guarantees on the
compliance of the probabilistic safety constraints.

C. Frameworks for Online Mapping–Planning

Limited attention has been devoted to the navigation prob-
lem as a whole, especially in the face of uncertainties. Note
that the navigation requirements differ from those of coverage
path planning, for which there is a perpendicular literature
thread, e.g., [23], [37]. Current navigation frameworks in
the robotics literature are built on strong assumptions, which
could endanger (or completely neglect) some of the essential
requirements for safe navigation in undiscovered environ-
ments. Some of the prerequisites are the ability to create
an uncertainty-aware representation of the environment such
that uncertainties about the environment can be considered
at the planning stage. It is also crucial to ensure complete-
ness guarantees, i.e., the ability of finding a solution if one
exists, and among many others, being capable of guaran-
teeing the vehicle’s safety at any time during the mission.
Ideally, an online mapping–planning framework should be
able to find paths quickly while offering asymptotic optimality
guarantees.

A common strategy for online navigation is to continu-
ously replan in the face of changes in the robot’s pose or
the environment awareness. Scherer et al. [69] endowed an
UAV with the capability to map online with an occupancy
probabilistic grid and then to guide itself toward the goal
with a combination of global and local potential field-based
planners [69]. Along this line, navigation in 3-D environments
by mapping from stereo vision and planning with the RRT was
considered in [6]. The resulting paths of these approaches do
not account for kinodynamic constraints or safety guarantees.
Alternatively, in [42], the local planner of the RRT approx-
imated an UAV capabilities by 3-D Dubins paths. Neverthe-
less, none of these approaches considers any of the multiple
sources of uncertainty in the mapping nor the planning stage,
thus not providing any theoretical performance or safety
guarantees.

More recently, Ho et al. [29] proposed an online framework
to build an uncertainty-aware map and plan over it using the
RRT. However, the resulting paths do not meet kinodynamic
nor safety constraints. Instead, proposals in [27] and [28]
presented an online framework to plan paths under motion con-
straints for AUVs, but their approach assumes zero uncertainty.
While their framework succeeded in solving start-to-goal
queries in unexplored real-world environments, their planner
used ad hoc heuristics to estimate the solution’s associated risk
and approximated the system’s dynamics with Dubins curves.
Frameworks can employ multilayered schemes to scope the
complexity of online constrained planning in a subregion of
the entire planning space, e.g., [18], [76]. Youakim et al. [80]
presented a multirepresentation, multiheuristic A* planner
capable of jointly dealing with mobile-base and manipula-
tion planning in unknown environments while accounting for
localization uncertainty via heuristics. Despite all methods
have been tested in real-world environments, the underlying
frameworks lack of theoretical analysis and do not provide a
measure of robustness or quantified safety guarantees.
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D. Closely Related Contributions

An early version of the work presented in this manu-
script has appeared before [55]. This consisted of a simpler
framework that proved to be suitable for real-world motion
planning problems, but its applicability was strictly lim-
ited to underwater robots operating at constant depth,
i.e., 2-D workspaces. This motivated the development of this
follow-up work to extend the framework’s capabilities to suit
the requirements of a larger group of robotic systems and
environments. Overall, given the precedent efforts by the
authors, this article provides the following contributions.

1) An online mapping–planning framework that probabilis-
tically guarantees the robot safety during navigation
tasks in unknown environments (see Section IV).

2) A mapping strategy using local submaps that builds an
uncertainty-aware map (Section V). These calculations
now, in contrast to [55], include efficient retrieval of
environmental uncertainties and consider probabilistic
map fusion to deal with overlapping local submaps.

3) A multilayered planner (MLP) that guides the search
in the high-dimensional belief space (Section VI), in
contrast to the uniform search of the single-layered
planner in [55]. Our planner satisfies kinodynamic con-
straints and probabilistic safety guarantees while provid-
ing probabilistic completeness and asymptotic optimality
guarantees.

4) A rapid probabilistic collision checking routine
(Section VI-C). In contrast to [55], the calculations
now include a controllable confidence level α that
allows to trade the tightness of the safety bound for
computational efficiency while correcting for the tail
events (i.e., the probability mass excluded by the
confidence level).

5) A thorough evaluation of the whole framework and its
key constituent components (see Section VII). Besides
robot deployments on challenging real-world environ-
ments, this assessment, in contrast to [55], now includes
rigorous analysis on different scenarios and dynamical
systems.

Our contributed advancements allow for faster online
motion planning and more efficient evaluation of uncertainties.
Consequently, the framework now can compute probabilis-
tically safe navigation actions online for high-dimensional
systems and more challenging unknown environments.

III. PROBLEM FORMULATION

In this work, the focus is on the challenging problem of safe
autonomous navigation in unexplored environments. To start
with, the robotic system must be capable of perceiving and
creating a consistent representation of the surroundings despite
its potentially uncertain localization. The perceived surround-
ings must be encoded efficiently such that the robot can
exploit them online for planning purposes. Besides the map-
ping requirements, the process of planning navigation actions
toward the desired goal is challenging by itself. The robot must
not only account for its limited and uncertain maneuverability
but also for the evolving awareness and uncertainty of the

TABLE I

SUMMARY OF THE NOMENCLATURE IN THIS ARTICLE

surroundings as the robot moves. This section provides formal
definitions for these uncertainties and the problem of safe
autonomous navigation in unexplored environments. Table I
summarizes the nomenclature used through this article.

A. Motion Uncertainty and Constraints

Consider a mobile robot that operates in a workspace
W ⊂ Rnw , where nw ∈ {2, 3}, under motion uncertainty.
The uncertainty in the robot’s motion can be due to many
reasons, e.g., unmodelled dynamics or noise in actuation,
and can be described in several ways. In this work, inspired
by [8], [26], [40], and [52], the evolution of the uncertain
robotic system is assumed to follow a Gaussian process. That
is, the robot state xk at every time step k is defined by a
Gaussian distribution

xk ∼ bk = N
�
x̂k, �xk

�
(1)

where bk is referred to as the belief of xk and is fully defined
by mean x̂k and covariance �xk . The set of all beliefs is called
the belief space and denoted by B. Intuitively, B is an uncertain
representation of the state space X . Mean x̂ ∈ X ⊆ Rnx is the
nominal state of the robot and evolves according to

x̂k+1 = f (x̂k, uk) (2)

where f : X × U → X captures the nominal (known)
dynamics of the robot, and uk ∈ U ⊂ Rnu is the system’s con-
trol input. Covariance �xk ∈ Rnx×nx

>0 describes the uncertainty
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around the nominal robot state and evolves according to

�xk+1 = g
�
�xk , uk

�
(3)

where g : Rnx×nx × U → Rnx×nx
>0 is the covariance function.

Examples of Gaussian processes for robots with unicycle and
fixed-wing dynamics are provided in Appendix A. Methods
for modeling robots with (partially) unknown dynamics as
Gaussian processes are discussed in [34] and [52].

B. Environment Uncertainty

Some applications in robotics lack complete awareness of
the environment, either because there is no information about
the surroundings or due to the presence of dynamic elements
in the workspace. This work scopes the mapping requirements
to undiscovered static environments. In order to reveal the
obstacles in the environment, the robot is equipped with
exteroceptive sensors such that it can autonomously explore
the surroundings as it moves, i.e., to integrate into the map
the obstacles when they are inside the sensor’s detection
range. Importantly, most sensors uniquely detect points on the
boundary of a nearby obstacle.

This work assumes no uncertainty in the robot local observa-
tions denoted by hk . To transform this local observation from
the robot frame to the global frame, let hk ∼ N (ĥk, 0). Bear-
ing in mind that the robot’s location might be uncertain with
respect to the global frame bk ∼ N (x̂k, �xk ), the observed
point is represented in the global frame as

bO = bk ⊕ hk (4)

= N
�
x̂k ⊕ ĥk, J1⊕�xk JT

1⊕
�

(5)

where bO ∼ N (x̂O, �xO ) is the result of the Gaussian
relationships via a compounding operator ⊕ explained
in Appendix B. From these uncertain points xO , the robot con-
structs a probabilistic map M. Then, the obstacle occupancy
probability for point x ∈ X denoted by FX (x) is the sum of
the normally distributed densities in M. The cumulative sum
over all space X is called cumulative map and denoted by FX .

C. Probabilistic Safety Guarantees

The system’s and the environment’s uncertainty are jointly
considered to guarantee the vehicle’s safety. More specifically,
the probability of the system being in collision with an obstacle
in the environment at time k is characterized by

pcollision(bk, M) =
�

X
bk(x) FX (x) dx

=
�

X
N

�
x | x̂k, �xk

�
FX (x) dx (6)

where FX (x) is the cumulative obstacle occupancy probability,
as introduced in Section III-B. Then, given a minimum prob-
ability of safety psafe, we require 1− pcollision(b, M) ≥ psafe

for every belief b on the trajectory in order to probabilistically
guarantee the robot’s safety.

Fig. 1. Framework for online mapping and motion planning under kinematic
and uncertainty constraints.

D. Planning Problem

Therefore, the planning problem considered in this work
seeks a dynamically feasible trajectory in the belief space B,
which is probabilistically safe. Formally, let Bgoal ⊂ B denote
the set of all belief states that correspond to the desired goal
region Xgoal in the environment as

Bgoal =
�

b ∈ B
�����

�

Xgoal

b(x) dx ≥ pgoal

�
(7)

where pgoal is the minimum probability that a belief must
satisfy for being considered to be in the goal region.
Then, the constrained planning problem is to compute a
sequence of controls u0,u1, . . . ,uT−1 ∈ U that result in
a dynamically feasible trajectory ξ : [0, T ] → B for the
robotic system described by (1), (2), and (3) such that
ξ(0) = bstart ∈ B, i.e., the system state at the beginning of the
mission, ξ(T ) ∈ Bgoal, and 1− pcollision(ξ(t), M) ≥ psafe for
all t ∈ [0, T ].

IV. FRAMEWORK FOR ONLINE NAVIGATION

This article presents a framework that endows a robotic sys-
tem with the capability of safely navigating through unknown
environments. This is achieved by means of online map-
ping and online motion planning of trajectories that meet
motion and probabilistic constraints. The framework, depicted
in Fig. 1, is threefold: 1) a mapping module that incrementally
builds an uncertainty-aware map; 2) a planning module that
continuously computes a safe and feasible trajectory toward
the goal; and 3) a framework manager that coordinates the
overall framework’s execution. The remainder of this section
describes the manager’s strategy to control the interaction
between the two core modules of the framework, i.e., the
mapping (see Section V) and the planning (see Section VI).
Note that, although the framework’s description focuses on the
online navigation challenge, the proposed online scheduling
intrinsically solves the off-line motion planning problem.

The framework manager coordinates the mapping
(MAPPER) and planning (PLANNER) modules according
to the pipeline presented in Algorithm 1. This is, given the
desired goal region Bgoal and the required probabilistic safety
guarantees psafe, the manager conducts an iterative process
until the system reaches the predefined goal region (line 7).
An iteration consists of solving an updated version of the
underlying motion planning problem that accounts for any
alteration to the system’s state and environment awareness.
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Each iteration starts by predicting a planning frame R	 that
corresponds to the robot state at the time the current itera-
tion solution will be available (line 8). Calculating a suit-
able planning frame is essential to guarantee the continuity
and feasibility between consecutive plans. As the framework
iterates each �TMP and it has full knowledge of the plan
in execution ongoing_traj, calculating a planning frame that
is suitable after �TMP is formulated as a state prediction
problem. This is, given the current robot state xW

R and the
set of subsequent controls u involved in the execution of
ongoing_traj, xW

R	 is computed by integrating (2) and (3) for
the time-horizon �TMP. Then, the manager retrieves, from the
MAPPER, the current environment awareness as a cumulative
map F R	

X relative to R	 (line 9). Both the predicted planning
frame R	 and the updated cumulative map F R	

X are provided
to the PLANNER (lines 10 and 11).

Before proceeding to solve the updated planning problem,
the current plan in execution ongoing_traj, if any, is prob-
abilistically checked for collision according to the current
uncertainty-aware map F R	

X . In the event of ongoing_traj not
being any longer valid, the framework manager dispatches to
the robot the segment ongoing_traj of ongoing_traj that is still
safe (lines 12 and 13). This approach prevents the vehicle from
stopping every time that a trajectory gets partially invalidated
while ensuring its safety.

Finally, the PLANNER attempts to solve the planning
problem by growing a new tree in B for a specific amount of
time �TMP (line 14). The PLANNER tries to find a near-optimal
trajectory that meets kinematic and probabilistic constraints
within the allocated time budget �TMP and returns a new_traj
if one is found (line 15). The newly found new_traj is uniquely
dispatched to the robot when it fulfills the selection criteria
defined in satisfiesCriteria() (sline 16–18). This
work bases the selection criteria satisfiesCriteria()
on the length of the trajectory; new_traj is dispatched
if length(new_traj) ≤ length(ongoing_traj), where
length(ongoing_traj) = ∞ if ongoing_traj is partially
invalidated, i.e., it does not reach the goal region Bgoal.

Note that the computations in lines 8 and 9 are low demand-
ing, and they can be scheduled in parallel to the main execution
of the framework’s pipeline. Therefore, the overall iteration
rate of the framework is 1/�TMP, as solving the planning
problem (line 14) is the unique process of the framework that
requires a nonnegligible amount of time.

Given the nature of the problem of navigation in unknown
environments, it may be possible that a feasible and prob-
abilistically safe trajectory toward the goal region does not
exist. Therefore, the framework is endowed with a contingency
plan that attempts to return the vehicle nearby the deployment
location bstart. This contingency plan gets activated when the
planner has not been able to find a solution in the last
ncp consecutive iterations, where ncp is a user-defined safety
value. In the event of the contingency plan getting activated,
the MANAGER is reinitialized with the new planning problem.
Note that, if the environmental awareness is highly uncertain,
there might not exist a trajectory toward the new goal region.
In this situation, not considering the previous map information
for planning would allow the vehicle to move safely toward

Algorithm 1 MANAGER(Bgoal, psafe)

1 Input:
2 Bgoal: Goal region
3 psafe: Required probabilistic safety guarantees
4 begin
5 ongoing_traj← ∅
6 PLANNER.loadProblem(Bgoal, psafe)
7 while not isGoalAchieved() do

/* Predict planning frame */
8 R	 ← pedictFrame(ongoing_traj)

/* Retrieve cumulative map */
9 F R	

X ← MAPPER.getMap(R	)

/* Update planning problem */
10 PLANNER.setNewFrame(R	)
11 PLANNER.updateMap(F R	

X )

/* Check ongoing plan */
12 if not PLANNER.isValid(ongoing_traj) then
13 dispatchPath(ongoing_traj)

/* Solve planning problem */
14 PLANNER.solve(�TMP)

/* Dispatch best valid plan */
15 new_traj ← planner.getSolution()
16 if satisfiesCriteria(new_traj) then
17 ongoing_traj ← new_traj
18 dispatchPath(ongoing_traj)

the deployment location. In case no feasible motion plan is
found to return to the deployment location, an emergency
maneuver should be performed, e.g., coming to a complete
stop for ground vehicles, going to the water surface for AUVs,
and immediate landing for UAVs. Alternatively, one might
consider ensuring the existence of a contingency plan at any
time as in [22], but doing so under uncertainties is not trivial.

V. INCREMENTALLY MAPPING UNKNOWN

ENVIRONMENTS VIA LOCAL MAPS

Incrementally exploring the environment with a location-
uncertain system leads to an uncertain representation of the
surroundings. Under these conditions, obtaining a consistent
and reliable representation of the entire environment is a chal-
lenging task commonly addressed with probabilistic inference
approaches. These algorithms rely on gathering data from
which distinctive features (landmarks) can be extracted and
used to bound the uncertainty of the environment representa-
tion and system localization. Nonetheless, even for scenarios
rich in features, there are always some residual uncertainties.
Moreover, onboard perception sensors usually suffer from
noises, which compromises the accuracy of the environment
representation. All these issues motivate the need for an
environment representation that jointly explains captures the
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Fig. 2. Online mapping of the environment suitable for motion planning under uncertainty. (a) As the robot navigates through an unknown environment,
(b) it builds a probabilistic map M, which represents the surroundings as a set of local maps. Each local map is uncertain [magenta ellipses in (a)] with
respect to the global frame. (c) and (d) Each local map is encoded as an occupancy grid map, which is built from a set of sequential sensor scans over a
finite horizon time. (e) All local maps are fused into a cumulative map representation F R	

X taking into account the relative uncertainty of each local map with
respect to the predicted planning frame R	. (a) Environment. (b) Probabilistic map M. (c) Semantic scene understanding. (d) Probabilistic scene understanding.
(e) Cumulative map F R	

X . Note that our mapping suits 3-D scenes too and illustrations in 2-D for visualization purposes only.

uncertainty on the true obstacle’s localization and the detection
confidence according to the sensor model while being suitable
for motion planning. In this work, such a representation is
referred to as a probabilistic map.

This section details the undertaken mapping approach,
which builds a set of local occupancy submaps whose base
poses are uncertain with respect to a global frame (see
Section V-A). Each submap is an occupancy grid map,
which provides an efficient strategy to encode the incremental
environment awareness (see Section V-B) and retrieve infor-
mation about the environment occupancy (see Section V-C
and Section V-D). This overall mapping strategy has proven
to be suitable for real-time robotic mapping and planning
applications in our previous work [55] and, despite being out
of the scope of this manuscript, has also shown to be effective
for online mapping and localization applications [29].

A. Global Map as a Set of Local Submaps

There are different alternatives to represent the incremental
knowledge of an environment, e.g., [3], [53], [66], [77]. The
framework presented in this manuscript encodes the environ-
ment M via a set of n local stochastic submaps [60], [61]
due to its demonstrated efficiency on dealing with applica-
tions requiring real-time robotic localization, mapping, and
planning [29], [55]. Formally, the local submaps method is
defined as

M = {LM1, . . . ,LMn} (8)

LMi =
�{v1, . . . , vm}, x̂W

LMi
, �W

LMi

	
(9)

where each local submap LMi contains a set of sequential
sensor scans over a finite horizon time �TLM. Within this

time period, all point coordinates v of the sensed environment
are registered into the active submap LMn . The coordinate
frame of LMn is defined in a global frame W by its
estimated state xW

LMn
∼ N (x̂W

LMn
,�W

LMn
). Importantly, such

local registration assumes null uncertainty on observations,
i.e., �LMn

v = 0 ∀ v ∈ LMn. A new local submap LMn+1 is
initiated every �TLM such that the accumulated localization
error within the active local submap LMn is low. In other
words, the local mapping time horizon�TLM must be defined
such that it always maintains the robot pose uncertainty �LMn

R
within the active local map LMn negligible.

The coordinate system of a new local submap LMn+1

is defined at the robot state estimate when LMn+1 is initi-
ated, i.e., xW

LMn+1
= xW

R . It is assumed that the robot starts
building LMn+1 as soon as it finishes the LMn . Therefore,
the robot state at the end of LMn (defined as the last global
robot state when building LMn) is the same as the global
robot start state of LMn+1. For simplicity, the origin of the
global map W is chosen to be the same as the coordinate
frame of the first local submap LM1, i.e., the robot’s initial
state.

Fig. 2 illustrates the concept of using local submaps to
map the incremental knowledge about the environment. Par-
ticularly, the figure depicts a robot that has been navigating
in an unknown environment, while, in the meantime, it has
been encoding the perceived surrounding environment in a
total of eight local submaps. Noteworthy, the example assumes
open-loop navigation, i.e., without localization updates. There-
fore, the first defined submaps are less uncertain with respect
to the global frame W than those built at a later stage. This
fact corresponds to unbounded growth of the uncertainty on
the system localization estimate.
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B. Local Submap as Occupancy Grid Map

The assumption of null uncertainty on the robot pose within
each local submap, also referred to as known robot poses,
enables the representation of each local submap as an occu-
pancy grid map. The chosen alternative to efficiently encode
an occupancy grip map is via Octomaps [30]. Octomaps
permits fusing range-based data into a probabilistic voxel
representation, which generates an occupancy grid map with
adjustable resolution. Octomaps store the information in an
octree data structure, which provides fast access time while,
at the same time, optimizing memory usage. All these desir-
able features make the undertaken mapping strategy ideal for
online mapping and planning.

The probabilistic sensor fusion within an occupancy grid
map is performed as an Octomap [30], [50]. This is, the prob-
ability P(v|h1:k) of a cell v to be occupied given a set of
sensor measurements h1:k is estimated as

P(v|h1:k) =



1+ 1− P(v|hk)

P(v|hk)

1− P(v|h1:k−1)

P(v|h1:k−1)

1− P(v)
P(v)

�−1

(10)

where P(v|hk) is the inverse sensor model characterizing the
sensor used for mapping and P(v|h1:k−1) is the preceding
estimate given all historical measurements. Using log-odds
notation

L(·) = log



P(·)

1− P(·)
�

(11)

and under the common assumption of a uniform (noninforma-
tive) prior, i.e., P(v) = 0.5, (10) is simplified to

L(v|h1:k) = L(v|h1:k−1)+ L(v|hk). (12)

To change the state of a node v, (12) requires as many
observations as the ones used to define its current state. This
overconfidence in the map is addressed as in [79] by using
a clamping policy to ensure that the confidence in the map
remains bounded

L(v|h1:k) = [L(v|h1:k)]lmax
lmin

= max(min(L(v|h1:k), lmax), lmin) (13)

where lmin and lmax denote lower and upper bounds on log-odds
values. As a consequence, the model of the environment
remains updatable [30].

The measurement update rules in (12) and (13) can be used
with any kind of distance sensor, as long as the inverse sensor
model is available. Our framework employs the extended
beam-based inverse sensor model depicted in Fig. 2(c). This
model assumes that: 1) the line of sight between the sensor
origin and the endpoint of measurement does not contain
any obstacle (free space); 2) endpoints correspond to obstacle
surfaces (occupied space); and 3) the line continuing beyond
the endpoint until the maximum sensor range is likely to be
occupied by the observed obstacle (occluded space). Then,
the extended ray-casting operation to update each voxel v from
the sensor origin to the maximum sensor range is performed

using the following log-odds inverse sensor model:

L(v|ht) =

⎧
⎪⎨
⎪⎩

lfree, if v is traversed by the beam

locc, if v is hit by the beam

locl, if v is between the hit and sensor range
(14)

where lfree and locc are constants determined according to the
sensor model, and locl penalizes occluded zones according to
the decaying function

locl = γ d locc (15)

where, for a decay rate γ ∈ [0, 1], locl decreases γ times for
each unit of d , which is the distance from the measurement
endpoint. This corresponds to locl = locc for d = 0, i.e., in the
hit point, and to locl → 0, i.e., to a noninformative P(v) = 0.5,
as d →∞. The maximum expand of the occluded region is
as far as the sensor range.

C. Map Fusion and Single Point Query

An occupancy query to the current probabilistic map M is
done by converting the given query into multiple local queries.
The occupancy probability values at each local submap can be
fused together by means of the log-odds update rule in (12)
with the corresponding clamping operation in (13). These
operations apply because combining measurements from mul-
tiple local submaps is a similar operation as combining mul-
tiple measurement updates in a single global map [29].

Without loss of generality, assume that an occupancy query
at position x̂Y is performed from an uncertain coordinate
frame Y with known pose estimate xW

Y ∼ N (x̂W
Y ,�

W
Y ). This

global query corresponds to the multiple local log-odds occu-
pancy queries

L(x̂Y ) =
n�

i=1

�
L1:i−1(x̂Y )+ Li (xLMi )

�lmax

lmin
(16)

where L1:i−1(x̂Y ) is the accumulative log-odd estimate from
the precedent i − 1 local submaps with L1:i−1(x̂Y ) = 0 for
i = 1, Li (·) implies that the log-odds lookup is done in
the local submap LMi , and xLMi ∼ N (x̂LMi ,�LMi

Y ) cor-
responds to x̂Y in local coordinates. xLMi is calculated via
the linear estimation of known spatial relationships

xLMi = �xW
LMi
⊕ �

xW
Y ⊕ xY

�
(17)

where ⊕ denotes the compounding operation and � corre-
sponds to its inverse relation, as commonly used to simplify
notation when calculating spatial transformations (see Appen-
dix B for a brief introduction and [70] for a full review).

Given that x̂Y in local coordinates follows a probabilistic
distribution, the local occupancy query Li (xLMi ) is

Pi (xLMi ) =
�

v∈LMi

P(v) N
�

v
�� x̂LMi ,�LMi

Y

�
(18)

where v represents the set of voxels in submap LMi and
Pi (xLMi ) can be described in log-odds Li(xLMi ) notation
via the log-odds transform.
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D. Computation of the Cumulative Map F R	
X

Section V-C provides a strategy to query the occupancy
probability P(x) of a single point coordinate x ∈ X . Our
previous work [55] demonstrated that this approach is suitable
for the requirements of an online planner under probabilistic
constraints. However, bearing in mind that each planning
cycle requires numerous queries of P(x) involving differ-
ent x, the overall planner performance can be enhanced by
computing the map fusion before the planning time budget
starts.

The probabilistic map fusion over all state space X is
described by the cumulative distribution FX over the local
density distributions of the sensed environment.3 In particular,
for the online planning problem, it is of interest to fuse
the map information with respect to the predicted planning
frame R	 such that the cumulative map F R	

X reflects the relative
uncertainty between the current environmental awareness and
the planning frame R	. Fig. 2(e) illustrates the extraction
of F R	

X from a set of local maps. Computing F R	
X implies that

the computational requirements of retrieving P(xR	) during
planning time are reduced to those of a lookup table in the
cumulative map F R	

X .
Subject to the log-odds transformation, F R	

X is computed by
rewriting (16) and (18) as

L(X̂ R	) =
n�

i=1

�
L1:i−1(X̂ R	)+ Li (XLMi )

�lmax

lmin

(19)

where L1:i−1(X̂ R	) is the accumulative log-odd estimate from
the precedent i − 1 local submaps with L1:i−1(X̂ R	) = 0 for
i = 1, Li (·) is the log-odds lookup done in the local occupancy
submap LMi , and XLMi ∼ N (X̂LMi ,�LMi

R	 ) corresponds to
the state space X̂ R	 in local coordinates defined as

XLMi = �X W
LMi
⊕

�
X W

R	 ⊕ X R	
�
. (20)

Then, the occupancy probability Li (XLMi ) at LMi for all
x ∈ XLMi is computed as

Pi(XLMi ) =
�

v∈LMi

P(v) N
�

v | x̂,�LMi
R	

�
∀ x ∈ XLMi

= LMi ⊗Kα

�
�LMi

R	

�
(21)

where v represents the set of voxels in submap LMi and
Kα(·) with confidence level α = 1 is a kernel representing
the discrete version of a Gaussian distribution over the entire
span of the local submap LMi (see Appendix C). ⊗ is
the correlation operator, i.e., a sliding inner product, and
Pi (XLMi ) can be described in log-odds Li(XLMi ) via the
log-odds transform.

Interestingly, the underlying computation of F R	
X is the cor-

relation operator ⊗, a common technique for which there exist
efficient implementations. On top of that, the independence
between local submaps allows parallelizing (21) for each LMi

in different threads. Ideally, this process could be scheduled

3Only those voxels describing the known environment, i.e., free, occluded,
and occupied space, are considered in the computation of FX . Considering
the unknown space with its P(v) = 0.5 in the computations would lead to a
cumulative map with misleadingly overestimating occupancy probabilities.

such that F R	
X is ready before the planning time budget

starts.

VI. MULTILAYERED MOTION PLANNING UNDER

ENVIRONMENT AND MOTION UNCERTAINTY

The planning problem defined in Section III-D has three
main requirements: 1) to consider the vehicle’s motion con-
straints; 2) to validate probabilistic constraints in face of uncer-
tainties; and 3) to meet online computation limitations. Our
previous approach successfully addressed all these require-
ments formulating a single-layered sampling-based planning
strategy in the belief space [55]. The planner in question:
1) samples feasible states in the system’s state space and
2) extends and validates the tree of motions in the belief
space. This approach proved to be suitable for solving online
motion planning problems in challenging real-world scenarios,
but its applicability was limited to low-dimensional planning
problems given the huge search space and the computational
burden of all considered constraints.

As discussed in Section II, multilayered planning strate-
gies enable online planning in high-dimensional spaces. This
motivates the use of such an idea to extend our framework’s
capabilities to suit the planning requirements of a larger group
of robotic systems and environments. Principally, the extended
planning strategy employs a multilayered planning scheme
(see Section VI-A) to overcome the aforementioned scalability
issues. Such a strategy allows deferring the computation of
kinematic constraints (see Section VI-B) and probabilistic con-
straints (see Section VI-C) after identifying some subregions
of the system’s state space that potentially contain a solution
to the planning problem.

A. Multilayered Motion Planning

The capabilities of our previous planner (hereinafter referred
to as the constrained planner) are extended to deal with
problems of higher dimensionality by means of a multilayered
planning strategy. As schematized in Fig. 3, the proposed
strategy adopts a sequential two-layered planning scheme con-
sisting of a lead planner and the constrained planner. The lead
planner seeks to determine a subregion X 	 ⊂ X of the entire
state space that eases and, consequently, speeds up the search
of the final trajectory ξ , which accounts for all considered
constraints (see Section III-D). To this aim, the multilayered
scheme is designed as follows.

1) Lead Planner: It employs the RRT* to rapidly find
a path in the workspace W . The computed lead path
is a nearly optimal geometric solution ξ 	 ∈W used
to determine X 	 via the lifting operator lift :W → X
detailed in the following.

2) Constrained Planner: It leverages the delimited search
space X 	 and the SST in [55] to rapidly compute the final
solution ξ , which meets kinodynamic (see Section VI-B)
and probabilistic safety constraints (see Section VI-C).

Although the planners within the multilayered planning
scheme could be different, the selection above suits the online
requirements of our framework. This is, the framework’s over-
all planning time �TMP is divided as �TMP = �TL +�TC ,
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Fig. 3. (a) Multilayered motion planning framework: (b) lead planner—RRT* shown in blue computes a geometric lead ξ 	 (red path) to guide the search
space X 	 of (c) constrained planner—SST shown in magenta. The resulting trajectory ξ with its uncertainty (yellow funnel) satisfies kinodynamic and
probabilistic safety constraints.

where �TL and �TC are the time budgets allocated to the
lead and constrained planners, respectively. Then, given our
selection of planners, the assignment of time budgets allows
�TL � �TC as the lead planner is adept at providing quickly
a suitable lead path such that the constrained planner has at
its disposal most of the time budget �TL ≈ �TMP to refine
the final trajectory, which accounts for all the considered
constraints.

Given our selection of planners and their operational space,
the designed multilayered planning scheme requires the lifting
lift :W → X . A common lift(·) strategy is to define X 	 as a
tube around ξ 	 with radius d for the geometric components
of the state space, whereas the nongeometric components are
left unbounded, e.g., [56], [57], [76]. The performance of this
approach, however, is susceptible to the parametrization of d;
tight search spaces, i.e., small radius d , promote final solutions
with lower cost than those obtained with bigger radius d .
On top of that, relying on a fixed d requires hand-tuning such
parameter to ensure that the final solution lies within X 	; if
X 	 does not contain the final solution, the planner will lack
probabilistic completeness. Adjusting d to ensure probabilistic
completeness would prove to be a cumbersome task since the
type of environment and planning constraints, among many
other factors, should be taken into account.

Different from other multilayered planning schemes in the
literature, ours uses a method of information interchange
between planners that maintains the completeness and asymp-
totic optimality properties of the constrained planner when
used in a standalone fashion [55]. This work builds on the
idea of sampling around a lead path to present alternative def-
initions of X 	 via the lift(·) operator. In particular, the designed
MLP exploits a mixture of samplers to trade off the low-cost
trajectories found when sampling around a lead path and the
probabilistic completeness of uniform sampling. This article
proposes two mixtures of sampling techniques.

1) Bias to Rigid X 	: Given a fixed radius d , the planner
samples uniformly in X 	 with probability p and uni-
formly over the space with probability 1− p.

2) Adaptive X 	: The planner adjusts d within the range of
a strictly guided sampling to a uniform search. Adjust-
ing d can be conducted via some heuristics or as an
optimization problem subject to a cost function.

The performance of both approaches in comparison to a
rigid X 	 strategy is discussed in Section VII-B. Noteworthy,

Fig. 4. Probabilistic completeness of the proposed multilayered planning
scheme with adaptive lead, which (a) and (b) promotes finding the final
solution in the neighborhood of the asymptotically optimal lead ξ 	 (red),
while it (c) and (d) preserves completeness guarantees even when the lead
ξ 	 transverses a corridor, which does not offer a probabilistic safe passage.
(a) Lead planner—RRT*. (b) Constrained planner–SST. (c) Lead planner—
RRT*. (d) Constrained planner–SST.

any of the two presented mixtures of sampling strategies
ensures probabilistic completeness of the overall multilayered
scheme. As an extreme example, let us consider the scenario
depicted in Fig. 4(c) and (d), where the lead planner finds
an asymptotically optimal solution through the farthest (most
left) corridor. However, according to the probabilistic safety
constraints defined in Section VI-C, such a corridor does
not offer any safe passage. Despite the initial bias toward
this unsuitable X 	, a mixture of sampling strategies, as the
ones introduced in this section, permits finding a solution if
one exists provided enough time, thus ensuring probabilistic
completeness guarantees.

B. Planning Under Motion Constraints

The system’s motion capabilities are considered in the
constrained planner by expanding a tree with the system’s
motion model (2) and (3). In particular, the constrained plan-
ner employs the SST algorithm [41] to build a tree in the
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Fig. 5. Tree expansion under motion and probabilistic constraints. The state
beliefs (nodes) of the tree are obtained by considering the motion capabilities.
The ellipses surrounding the states represent their uncertainty, where green
corresponds to those states satisfying the probabilistic safety constraints and
red corresponds to those that do not.

belief space with state beliefs x ∼ b = N (x̂, �x) as nodes.
The tree expansion is based on two procedures: sample(·)
and extend(·), which are conducted in the state and belief
space, respectively [see Fig. 3(a)]. That is, sample(·) draws
a random state xrand ∈ X 	, where X 	 is a subregion of X
as defined in Section VI-A. The planner then selects a node
from the tree to attempt connecting to the randomly sampled
state xrand. Such a selection is conducted via nearest neighbor
in the state space using the Euclidean metric. The selected
node xnear has a probabilistic representation in the belief space,
i.e., xnear is better described as xnear ∼ bnear = N (x̂near, �xnear ).
Then, from this belief, the extend(·) procedure expands the
tree in the belief space by evolving the system’s motion
model (2) and (3) with a randomly sampled control input
u ∈ U . This expansion is done for a random period of time
Tprop. Since the considered motion model includes the system’s
uncertainty, each obtained belief (tree node) corresponds to a
vehicle’s state with its associated uncertainty (see Fig. 5).

C. Planning Under Probabilistic Constraints

In our approach, the environmental awareness relative to
the current robot state is represented as a cumulative dis-
tribution on discrete support F R	

X (see Section V). As dis-
cussed previously, this representation of the environment
favors efficiency for online mapping and planning appli-
cations. In fact, we leverage such encoding to guarantee
1− pcollision(b, M) ≥ psafe for each belief b of the tree as

1−
�

pcollision,α

�
b, F R	

X

�
+ (1− α)

�
≥ psafe (22)

α − pcollision,α

�
b, F R	

X

�
≥ psafe (23)

where α is the confidence level on the computation of
pcollision,α(·) ∈ [0, α]. In other words, pcollision,α(·) does not
cover a (1 − α) span of the belief b over the state space.
Therefore, it is assumed that the remaining (1 − α) is in
collision to ensure probabilistic guarantees on the collision
checking decision. All in all, this method can be exploited to
trade a constant conservatism α in favor of performance.

Then, the probability of collision of a robot centered belief
bR	 ∼ N (b̂R	, �R	

b ) with the environment is calculated as

pcollision,α

�
bR	, F R	

X

�
=

�
Kα

�
�R	

b

�
, F R	

X

�
F

= vec
�
Kα

�
�R	

b

��T
vec

�
F R	
X

�
(24)

where �·, ·�F is the Frobenius inner product of the overlapping
region between the b̂R	-centered discrete state belief Kα(�

R	
bk
)

(see Appendix C) and the cumulative environment aware-
ness F R	

X . The Frobenius inner product is an efficient operation
via matrix vectorisation.

The overall proposed MLP leads to the exploration tree
depicted in Fig. 5, whose edges account for the vehicle’s
kinodynamic capabilities and whose nodes are probabilisti-
cally safe subject to the system’s localization, motion, and
environment uncertainties. In addition, the expansion of the
tree is also subject to states not leading to an inevitable
collision, i.e., a state must allow for the vehicle to make a
full stop before colliding.

VII. EXPERIMENTAL EVALUATION

The proposed framework has been implemented in ROS
and uses the facilities provided by Octomap [30] and the
OMPL [72] as the core building block of the proposed map-
ping and planning strategies, respectively. This implementation
is used to evaluate thoroughly the different proposed features
and the framework as a whole. This section reports the results
of such analysis in an incremental fashion. First, Section VII-A
presents a discussion on the capabilities of our framework’s
precedent version in simulated and real-world scenarios. Then,
Section VII-B and Section VII-C report the performance of the
key components of the newly proposed framework, i.e., the
multilayered scheme and the probabilistic collision checking.
The potential of these components is individually evaluated
against closely related state-of-the-art approaches. Finally,
in Section VII-D, the capabilities of the new framework are
demonstrated in a challenging scenario.

A. Navigation in Unknown 2-D Environments

An early version of the work presented in this article has
appeared before [55]. This consisted of a simpler framework
that evaluated all uncertainties on the fly (in contrast to the
proposed cumulative map encoding) while exploring the belief
space via a single-layered planner (in contrast to the proposed
multilayered guided exploration). As reported next, our prece-
dent work proved to be suitable for safe robot navigation,
but its computational requirements limited its applicability to
low-dimensional spaces.

The precedent framework has been deployed on the
Sparus II autonomous underwater vehicle (AUV) (see Fig. 6),
a nonholonomic torpedo-shaped vehicle with hovering
capabilities [10]. To meet the limitations of our precedent
work, the AUV is limited to operate at a constant depth,
i.e., in SE(2). Under these conditions, the motion model of
the Sparus II can be approximated by a unicycle system,
as detailed in Appendix A-A. The AUV is equipped with a
mechanical scanned imaging sonar (MSIS) to perceive the
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Fig. 6. Sparus II AUV, a nonholonomic vehicle.

surroundings and incrementally map the environment. We use
the default parameters in [30] of lfree = −0.4 (P(v) = 0.4),
locc = 0.85 (P(v) = 0.7), lmin = −2 (P(v) = 0.12), and
lmax = 3.5 (P(v) = 0.97). The decay rate in (15) is set
to γ = 0.8. The framework’s planning time is set to
�TMP = 1.5 s.

The test bed to evaluate the precedent framework consists
of two environments located in Sant Feliu de Guíxols (Spain):
1) breakwater structure that is composed of a series of concrete
blocks (14.5-m long × 12-m width), which are separated
by 4-m gaps [see Fig. 7(a) and (b)] and 2) rocky for-
mations that create an underwater canyon of 28-m long
[see Fig. 8(a) and (b)]. Using these environments, two exper-
iments are reported: 1) evaluation of the overall performance
of the framework in the underwater simulator (UWSim) [65]
and 2) validation of the framework in real in-water trials.
Experiment 1) is conducted in both environments, while exper-
iment 2) is uniquely tested in the real breakwater structure
scenario.

1) Simulated Trials: The framework is exhaustively tested
in the simulated breakwater structure and canyon scenarios
with 20 attempts per scenario (total of 40 trials).

In the breakwater structure, 19 start-to-goal queries are
successfully solved. Among those successful experiments,
the robot achieved the goal region Bgoal by crossing through
the first 1-m gap in 17 occasions, while, in the remaining
two trials, the planner found a less optimal trajectory through
the second 4-m passage. Fig. 7 depicts the mission execution
in one of those trials. In the initial part of the mission,
as the environment is completely undiscovered, the computed
trajectory goes straight to the goal [see Fig. 7(c)]. As soon as
the trajectory gets invalidated, a new collision-free trajectory
is computed [see Fig. 7(d)]. After some mapping–planning
iterations, the robot gets out of the 4-m gap between two
blocks [see Fig. 7(e)]. On average, the computed trajectories
toward the goal have a length of approximately 45.2 m and
are completed in 2	21		.

All 20 start-to-goal queries in the simulated canyon scenario
are successfully solved. The higher success rate with respect
to the previous experiment is given by the nature of the
environment; this scenario involves less abrupt maneuvers, and
the passage is wider, more than twice larger though. Fig. 8(d)
depicts one of the trajectories calculated through the narrow
passage of the canyon. On average, the calculated trajectories
toward the goal have a length of approximately 58.4 m and
are completed in 2	59		.

2) Real-World Trials: In-water experiments are conducted
in the real breakwater structure located in Sant Feliu de
Guíxols (Spain). Similar to the simulated trials, the robot is

required to solve a start-to-goal-query to reach a goal region
Bgoal located on the opposite side of the structure, which can
only be achieved by navigating through any of the narrow
4-m gaps. A total of five start-to-goal queries are attempted.
During those autonomous missions, the vehicle is connected
to a wireless access point buoy for monitoring purposes;
all components of the framework run on the robot to prove
the framework’s suitability for real-world robots with limited
onboard computation power.

In all five trials, the framework was successful in finding and
driving the Sparus II AUV toward the desired goal region Bgoal

through one of the narrow gaps in the breakwater structure.4

In four trials, the trajectory was found through the first
corridor, while, in the other trial, the robot went through
the second gap. Fig. 9 depicts Sparus II in one of those
in-water trials and the trajectory calculated toward the goal,
which has a length of 57.9 m and took 3	07		.

B. Multilayered Planning Scheme

The multilayered planning scheme presented in
Section VI-A is one of the key features allowing us to
overcome the scalability issues of our previous single-layered
planner [55]. Nonetheless, different from current multilayered
approaches that rely on rigid definitions of the search
space X 	 (rigid-X 	), this article explores two alternative
definitions of X 	 (biased-X 	 and adaptive-X 	) based on
a mixture of sampling experts. This section reports the
performance of these four strategies in the following belief
space planning problem: reaching the state between the blocks
in Fig. 10 while satisfying kinodynamic and probabilistic
safety constraints subject to a psafe = 0.99 minimum safety
probability bound. In this evaluation, the entire 3-D
environment is considered to be known in advance, and
the system dynamics are approximated as described in
Appendix A-B.

The four methods [single-layered planner (SLP) and MLP
with rigid-X 	, biased-X 	, and adaptive-X 	] are evaluated for
their ability to quickly find a solution and for the cost of the
resulting trajectory. The given total planning time budget is
set at �TMP = 1.5 s to emulate online planning requirements,
which is distributed as �TL = 0.3 s and �TC = 1.2 s for
the three multilayered schemes. With this setup, each plan-
ner attempts to solve the defined planning problem a total
of 2000 times.

Fig. 11 depicts the number of successfully solved trials and
the resulting trajectory length when considering a rigid-X 	 lead
with radius parameterisations d ∈ [0, 40] m. While d = 0 m
strictly limits the search space to those states on the lead path,
d = 40 m spans the search over all state space of the defined
planning problem, therefore resembling uniform sampling.
As it can be observed, small search spaces (small d) endanger
the planner’s ability to find a solution with limited time.
However, when a trajectory is found, the resulting cost is lower
than those solutions found with wider X 	 leads. Instead, these
wide search spaces (big d) make the planner struggle at solving

4A complete sea-trial through the real breakwater structure can be seen in
https://youtu.be/dTejsNqNC00
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Fig. 7. Incrementally mapping and planning in the undiscovered breakwater structure scenario. (c) Initial state of the Sparus II AUV in the unknown
environment with the initially found trajectory (red). (d) Anytime the trajectory is invalidated, a new collision-free trajectory is computed. (e) After some
iterations, the robot gets out of the 4-m gap between blocks. (a) Real breakwater. (b) Simulated breakwater. (c) Initial empty map. (d) Replanned trajectory.
(e) Final part of the survey.

Fig. 8. Incrementally mapping and planning in the undiscovered canyon
scenario. (a) Real canyon. (b) Simulated canyon. (c) Sparus II in the UWSim.
(d) Trajectory through the canyon.

most of the planning problems due to the search space extent.
In between these two extremes, a suitable parameterization
with d = 12 m (dashed lines) enables solving most of the
trials to the planning problem while providing a trajectory with
low length cost. Nevertheless, there are no efficient means of
defining the optimal d in advance since it is dependant on the
planning problem and environment characteristics. Therefore,
a rigid-X 	 strategy is not suitable for applications that lack
a fully prior informative representation of the environment.
Moreover, too restrictive guided searches can endanger the
completeness guarantees of the planner.

Fig. 9. Sparus II AUV guided by the proposed uncertainty-based framework
to solve a start-to-goal query in an undiscovered environment. (a) Sparus II
during the survey. (b) Trajectory toward the goal. (c) Trajectory through the
breakwater.

Fig. 10. Planning problem to assess the proposed multilayered scheme with
adaptive X 	 in comparison to other state-of-the-art approaches. The problem
is defined in the belief space for a SE(3) system operating in a 3-D workspace.
The minimum safety bound is set to psafe = 0.99.

The performance of those approaches that guarantee com-
pleteness, i.e., the SLP (green) and MLP with biased-X 	
(magenta) and adaptive-X 	 (orange) strategies is depicted
in Fig. 12. In particular, biased-X 	 is parametrized with radius
d = 12 m (best lead definition according to experimentation
in Fig. 11) and analyzed for different p ∈ [0, 1], whereas
adaptive-X 	 is defined, as shown in Fig. 13, i.e., with an
initial radius d = 3 m, which increases at a rate of 20 m/s.
Intuitively, adaptive-X 	 adjusts d from a strictly guided search
to uniform sampling, i.e., as t →∞, d →∞, i.e., X 	 → X .

Chapter 12: Online Mapping and Motion Planning under Uncertainty for Safe Navigation 109



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PAIRET et al.: ONLINE MAPPING AND MOTION PLANNING UNDER UNCERTAINTY FOR SAFE NAVIGATION 15

Fig. 11. Performance of the multilayer planning scheme with a rigid-X 	 ,
i.e., fixed radius around the geometric lead path.

Fig. 12. Performance of 1) our precedent SLP scheme (green) and the newly
proposed multilayered scheme when considering 2) a fixed lead with different
bias p (magenta, with best radius as found in Fig. 11), or 3) an adaptive lead,
as defined in Fig. 13 (orange).

Fig. 13. Two-layered planning scheme proposed in this work. After
computing a lead path, the constrained planner leverages an adaptive X 	
strategy to initially promote solutions with low cost (small d) before ensuring
probabilistic completeness by sampling the entire space (d →∞). Once a
solution is found, X 	 is fixed to let the constrained planner refine the found
solution until the completion of the planning time �TMP.

As it can be observed in Fig. 12, our precedent
single-layered planning scheme struggles at finding a solu-
tion on most of the trials; sampling uniformly the entire
high-dimensional belief space requires more time to find a

solution than the affordable time budget in online applica-
tions. Slightly worse performance is obtained when using a
multilayered scheme with biased-X 	 and p = 0 because it
still uses uniform sampling but with a portion of the total
planning time budget. However, as p→ 1, i.e., the planner is
more guided to the lead X 	 (whose optimal radius has been
determined empirically in Fig. 11), the performance of the
planner increases, in both the number of solved trials and
the length of the final solution. Interestingly, the proposed
adaptive sampling method endows the framework with a
competitive success rate and solution length to that obtained
when hand-defining the optimal radius.

C. Probabilistic Collision Checking

Sampling-based planners must be able to analyze the valid-
ity of a certain state accurately and efficiently. While accuracy
is relevant to avoid discarding regions of the state space,
which, in fact, are collision-free, efficiency allows for more
space exploration given a limited time budget. However,
accurate calculations jeopardize the ability to validate a state
rapidly, especially when accounting for uncertainty. In this
regard, chance constraints formulations [9], [46] offer an
interesting accuracy–efficiency tradeoff that has proven to be
suitable for many motion planning problems in the last decade
(see Section II). In fact, chance constraints formulations are
still the most widely used probabilistic collision checking
method among those state-of-the-art motion planning applica-
tions that account for uncertainty (e.g. [12], [71]). This moti-
vates the use of chance constraints as the baseline reference to
assess the proposed probabilistic collision checking algorithm.

The performance analysis comprises two chance constraints
formulations [9], [46] and our method with four different para-
metrizations α = {0.90, 0.95, 0.99, 0.999}. Each method is
assessed by its accuracy and efficiency. Accuracy is computed
as the ability to correctly detect that a state is valid

T P

T P + F N
∈ [0, 1] (25)

where a true positive (TP) indicates that a method’s outcome
matches the standard of truth,5 while a false negative (FN)
reflects that the method has mistakenly computed a state as
invalid. TP + FN is the total number of valid states according
to the standard of truth. Therefore, the higher the value of
the metric in (25), the more accurate the method is. For the
method’s efficiency, the analysis considers the average compu-
tation time to process the state validity.6 These two metrics are
analyzed subject to three variables relevant to motion planning
problems under uncertainty: 1) number of obstacles no in the
environment; 2) state uncertainty �x; and 3) minimum safety
probability bound psafe. With this setup, a problem instance
is parametrized by the triplet �no, σx , psafe�. In total, 847
instances are retrieved according to the parametrization span
and discretization defined in Table II.

Each problem instance is set up as follows. An environment
M is defined in R3 with a total of no cubical obstacles.

5The standard of truth is approximated by numerical integration of (6).
6All experiments are performed with an Intel Core i7-7820X CPU at

3.60 GHz × 16 with optimized C++ implementation for all methods.
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Fig. 14. Evaluation of the accuracy (first row) and performance (second row) of the chance constraints formulations [9], [46] and the proposed probabilistic
collision checking method with α = {0.90, 0.95, 0.99, 0.999}. The accuracy and performance metrics are represented subject to the number of obstacles
no in the environment (first column), the state uncertainty �x = σ 2

x I3×3 (second column), and minimum safety probability bound psafe (third column). The
shadowed area corresponds to the variance of the metrics. In the interest of clarity, only one tenth of the variance is displayed.

TABLE II

PARAMETRIZATION FOR THE COMPARISON OF PROBABILISTIC
COLLISION CHECKING METHODS

In order to have a computational representation of the scene
suitable for each method, the environment is encoded as:
1) a set of linear constraints, where each cubical obstacle
is characterized by six constraints and 2) a global occu-
pancy grid map with 0.5-m resolution. Then, given the
known environment M, each probabilistic collision checking
method is required to validate, subject to psafe, 10 000 beliefs
b ∼ N (x̂, �x). The state estimate x̂ ∈ R3 is uniformly sam-
pled over X , and the covariance �x ∈ R3×3 is set diagonal,
i.e., �x = σ 2

x I3×3.

The data from the 847 problem instances are depicted
in Fig. 14. In the interest of clarity, the corresponding dis-
cussion is divided into three parts: accuracy, efficiency, and
suitability.

1) Accuracy Discussion: The accuracy analysis (first row
in Fig. 14) depicts that the number of obstacles in the
environment is the variable penalizing the methods’ accuracy
the most. This behavior is due to the methods’ conservatism,
whose relevance increases with the hardness of the motion
planning problem. In other words, the more conservative a
method is, the more negatively affected it is. On top of that,
the conservatism of chance constraints formulations [9], [46]
increases with the number of obstacles, whereas our approach
accounts for a constant conservatism α. This tighter bound
allows our method to outperform both chance constraints
formulations, even when choosing the most conservative para-
metrization α = 0.9. Higher values of α favor accuracy at the
cost of more computational expenses (see discussion below).
Importantly, the confidence level α of our method should
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Fig. 15. Effect of conservatism in the workspace. The over conservatism
of chance constraints formulations [9], [46] impedes finding a solution.
Our probabilistic collision checking with a fixed conservatism α suc-
ceeds on finding a trajectory that transverses the environment with a total
of 36 obstacles. (a) [9]. (b) [46]. (c) This work.

always be set such that α ≥ psafe; otherwise, the constraint
in (23) will never be satisfied since the analyzed part of the
space is not sufficient to ensure probabilistic safety. This fact
is visible in Fig. 14(c), where, for α < psafe, our method with
parametrization α is not used.

2) Efficiency Discussion: The efficiency analysis (second
row in Fig. 14) reflects the expected computational complexity
according to the theoretical grounds of each algorithm. That
is, chance constraints strategies are fast for scenarios with
few numbers of constraints, but their computational expenses
grow linearly as the number of constraints increases. This
linear correlation is influenced by the iterative nature of
chance constraints, which allows invalidating a state as soon as
1− pcollision(b, M) < psafe, i.e., without the need to check all
constraints. In other words, invalid states involve less time than
those which are valid. Consequently, harder planning prob-
lems, i.e., those involving more obstacles, higher uncertainties,
or more restrictive safety guarantees, show a mild deviation
toward lower computational time due to the presence of a
high number of invalid states. In contrast, the computational
requirements of our method are uniquely influenced by the
state uncertainty �z , which determines the number of voxels
to include in the calculations (see Section VI-C). This might
restrict the suitability of our approach to systems whose state
uncertainty is bounded over time (see discussion below).

3) Suitability Discussion: Robotic systems operating in
uncrowded environments, i.e., very few obstacles sparsely
distributed in the space, might find chance constraints to
be a suitable alternative. However, the accuracy and effi-
ciency of such approaches scale poorly as the complexity of
the motion planning problem increases, i.e., more crowded

Fig. 16. Urban Stairwell scenario of the DARPA Subterranean Chal-
lenge 2019. (a) Start-to-goal query that requires traversing (perspective view).
(b) 40-m-long tunnel and (c) narrow 25-m-long stairwell (entrance to narrow
stairwell). Planning through the stairwell is particularly challenging due to
the accumulated localization uncertainty.

environments or higher uncertainties. As it can be observed
in Fig. 15(a) and (b), this behavior endangers the ability of a
planner to find a trajectory through tight apertures or narrow
passages, even if one exists. If an alternative route toward
the goal exists, the resulting solution will be larger than
those trajectories found with less conservative approaches.
Moreover, chance constraints require the representation of
the environment to be a set of linear constraints, which
can be prohibitively expensive to compute online, espe-
cially in applications where the environment is incrementally
discovered.

In contrast, our approach trades a constant conservatism α
in favor of accuracy and performance. This allows dealing with
crowded environments efficiently while providing higher accu-
racy than chance constraints methods. Therefore, as depicted
in Fig. 15(c), our probabilistic collision checking method
enables a planner to find a solution through the tight corridors
where chance constraints methods are over conservatist. How-
ever, our method involves higher computation times for highly
uncertain states. This limitation might be relevant for systems
with unbounded uncertainty, but most robotic systems are
endowed with state estimation algorithms that keep the state
uncertainty bounded over time. Alternatively, the parameter α
can be adjusted to reduce the computation time while still
guaranteeing safeness.

On the whole, the presented probabilistic collision check-
ing approach proves to be a suitable strategy for a wide
range of motion planning problems under uncertainty, even
for those where chance constraints struggle at finding a
solution. Moreover, our method is suitable for applications
building a representation of the environment online, given that
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Fig. 17. Online mapping and planning through the Urban Stairwell scenario of the DARPA Subterranean Challenge 2019. (a) Initial state of the quadrotor
and (b) first mapping and planning iteration: geometric path (red), kinodynamic tree satisfying the probabilistic safety guarantees psafe = 0.95 (magenta),
and resulting trajectory (green) with the associated uncertainty propagation (yellow). (c) and (d) When the previous trajectory is partially invalidated due
to the incremental knowledge of the surroundings, the framework finds a new trajectory toward the goal. Note that the previously observed patches of the
environment become more uncertain (grayish areas) as the robot moves. (e) and (f) Entrance to the narrow stairwell is fully mapped and the framework
successfully plans through it despite the considerable accumulated uncertainty. (g), (h), and (i) As the robot moves into the stairwell, the framework continues
iterating over the mapping–planning process to ensure safe navigation until (j) reaching the goal region. (k) Incremental set of local maps composing the
discovered environment during the mission, and (l) corresponding cumulative map F R	

X (only showing those voxels P(v) > 0.4 for visualization purposes).

those usually exploit the efficient encoding of occupancy grid
maps.

D. Navigation in Unknown 3-D Environments

The proposed framework as a whole has been deployed on
a simulated quadrotor unmanned aerial vehicle (UAV) [49]
equipped with a 3-D Light Detection and Ranging (LIDAR).
The considered environment is the Urban Stairwell scenario
of the DARPA Subterranean Challenge 2019. This scenario is
challenging due to its extensive workspace of approximately
40 × 50 × 15 m and all narrow passages that must be
traversed to accomplish the requested start-to-goal motion
planning query. Fig. 16 illustrates the Urban Stairwell scenario
altogether with the defined start-to-goal query. In these exper-
iments, the quadrotor’s dynamics are approximated to those
of a fixed-wing plane, as described in Appendix A-B, and the
surroundings are mapped online from the sensor’s data at a
resolution of 0.2 m. The remaining parameters of the
mapping module are as those in the experiments reported
in Section VII-A. During the mission, no localization updates

are considered to test the planner in the most adversarial con-
ditions, i.e., large environmental and localization uncertainties.
The required probabilistic safety guarantees are psafe = 0.95,
and the planning time is �TMP = 1.5 s, distributed as
�TL = 0.3 s and �TC = 1.2 s.

Fig. 17 depicts some snapshots7 of the online mapping
and planning procedure in the Urban Stairwell scenario of
the DARPA Subterranean Challenge 2019. Noteworthy is
that the mesh of the Urban Stairwell scenario is composed
of a total of 108 512 faces. Although these faces could be
potentially approximated online from the sensor’s data and
used as linear constraints in [9] and [46], it would imply
checking for collision against 30 times more linear constraints
than those considered in Section VII-C, for which chance con-
straints methods already showed poor performance due to their
over conservatism. Instead, our framework efficiently deals
with such complex scenarios online. All in all, the proposed
framework demonstrates its suitability for probabilistically

7A complete trial through the Urban Stairwell scenario of the DARPA
Subterranean Challenge 2019 can be seen in https://youtu.be/I5X_QFKDpeI
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safe autonomous navigation in hostile and unknown
environments.

VIII. CONCLUSION

This article has presented a novel end-to-end framework
that probabilistically guarantees the robot’s safety when nav-
igating in unexplored environments. The proposed approach
is twofold: 1) incrementally maps the vehicle’s surround-
ings to build an uncertain representation of the environment
and 2) plans feasible trajectories (according to the robot’s
kinodynamic constraints) with probabilistic safety guarantees
(according to the uncertainties in the vehicle’s localization,
motion, and mapping). Our proposed approach includes a
multilayered planning strategy that enables for faster explo-
ration of the high-dimensional belief space while preserving
asymptotically optimal and completeness guarantees, and an
efficient evaluation and tighter bound on the computation
of the probability of collision than other uncertainty-aware
planners in the literature. Overall, the framework is capable
to deal with high-dimensional problems online while being
suitable for systems with limited onboard computation power.
Experimentation conducted in simulation shows some of the
theoretical qualities of this work. In addition, simulated and
real-world trials on an AUV and a quadrotor UAV demon-
strated the suitability of the framework to guarantee the
robot’s safety while navigating in unexplored environments
and dealing with real-robot constraints.

The framework is not restricted to the presented experimen-
tal evaluation or a specific platform. Any other mobile robot,
either terrestrial, maritime, or aerial system, can benefit from
this work. The modularity of the proposed framework allows
for multiple extensions and variations. Foremost, although the
experimental evaluation of the proposed framework has been
conducted considering the worst case scenario of open-loop
navigation without uncertainty update, the framework can
bear with periodic navigation updates. An interesting possible
feature that could be added to the framework is the use of the
truncation trick, i.e., to uniquely propagate the posterior of
the estimation, which is in no collision. However, truncating
the system’s belief involves approximating the posterior to a
Gaussian distribution. Another possible extension is leveraging
the multiresolution encoding of octomaps to check the com-
pliance of the safety guarantee at different resolutions. Formu-
lating this process as a multiresolution kernel checking could
speed up computations even further. Finally, the conducted
experimentation pointed out that automatically adjusting the
replanning period might be beneficial, as well as studying
more intelligent methods to leverage from the lead path or
even prior solutions.

APPENDIX A
KINEMATIC MODELS

A. Unicycle System

For the particular case of a torpedo-shaped autonomous
underwater vehicle (AUV) that operates at a constant
depth, i.e., in a 2-D workspace W = R2, with configuration

space SE(2), the vehicle’s motion model can be approximated
by a (second-order) unicycle system

ẋ = v cos(ψ)

ẏ = v sin(ψ)

ψ̇ = ω
v̇ = a

where x and y correspond to the Cartesian coordinates of
the system with respect to a predefined reference frame,
ψ is the system’s orientation around the z-axis, v is the
vehicle’s forward velocity, ω is the vehicle’s turning rate, and
a is the acceleration. Thus, the system’s state is defined as
x = (x, y, ψ, v)T , and the system’s control input is defined
as u = (ω, a)T .

The model above approximates the AUV’s behavior, but,
in an underwater environment, it is subject to uncertain
external forces, e.g., current. To capture this uncertainty
in the dynamics, the vehicle motion is modeled as a
Gaussian process. The system’s motion model is first lin-
earized by using a dynamic feedback linearization controller
as presented in [15]. This technique: 1) transforms the
state of the closed-loop system to z = (x, y, ẋ, ẏ)T and
2) applies a proportional derivative (PD) controller on the
model to drive the system toward a desired state r. Then,
the differences between the real system and the linearized
closed-loop model can be approximated by a Gaussian dis-
tribution, and the closed-loop system can be represented as a
Gaussian process as in (2) and (3) with states z ∈ X = R4,
and controls r ∈ U = X . Thus, the system state zk is best
described by its probability distribution in the belief space B,
i.e., bk = N (ẑk, �zk ). The evolution of the belief is then given
by the independent propagation of its mean and covariance as

ẑk+1 = Aẑk + Brk (26)

�zk+1 = A�zk AT +�w (27)

where A ∈ R4×4 and B ∈ R4×4 define the closed-loop lin-
earized equations of motion with the PD controller as in [15],
and �w is the covariance of the noise modeling the discrep-
ancies between (26) and the real system behavior.

B. Fixed-Wing System

Although more complex models could be used to represent
the motion capabilities of an AUV or a quadrotor unmanned
aerial vehicle (UAV) operating in a 3-D workspace W = R3

with configuration space SE(3), both vehicle’s motion model
can be approximated by a fixed-wing system

ẋ = v cos(ψ) cos(θ)

ẏ = v sin(ψ) cos(θ)

ż = v sin(θ)

ψ̇ = ω
θ̇ = q

where x , y, and z correspond to the Cartesian coordinates
of the system with respect to a predefined reference frame,
ψ and θ , respectively, define the system’s orientation around
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the z-axis and the y-axis, v is the vehicle’s forward velocity,
and ω and q are the vehicle’s turning rate. Thus, the system’s
state is defined as x = (x, y, z, ψ, θ)T , and the system’s
control input is defined as u = (v, ω, q)T .

Similar to [26], the Gaussian process describing the UAV’s
motion model is learned from the simulated data. The training
data are extracted from the UAV’s simulator producing a varied
set of stationary excitations via the control input u. Relevant
control inputs are selected with the above system’s model to
maximize information on the output system’s state x.

Further discussion on methods for modeling robots
with (partially) unknown dynamics as Gaussian processes is
available in [34] and [52].

APPENDIX B
GAUSSIAN RELATIONSHIPS

This appendix summarizes the calculation of spatial rela-
tionships via the inverse and compound operators. These
elemental transformations can be composed to calculate more
complex spatial relationships. The interested reader may
wish to consult [70] for a more thorough explanation about
Gaussian relationships than the brief introduction that follows.

A. Inverse Relationship

The inverse relationship � represents the Gaussian relation-
ship x j

i as a function of xi
j as

x j
i := �xi

j . (28)

The first-order estimates of the mean and the covariance of
the compounding operation are

x̂ j
i ≈ �x̂i

j (29)

�x j
i
≈ J��xi

j
JT
� (30)

where

J� := ∂x j
i

∂xi
j

. (31)

B. Compound Relationship

The compounding operation ⊕ computes the Gaussian rela-
tionship xi

k from two spatial relationships xi
j and x j

k that are
arranged head-to-tail as

xi
k := xi

j ⊕ x j
k . (32)

The first-order estimates of the mean and the covariance of
the compounding operation are

x̂i
k ≈ x̂i

j ⊕ x̂ j
k (33)

�xi
k
≈ J⊕

⎡
⎣

�xi
j

��
xi

j ,x
j
k

�

��
x j

k ,x
i
j

� �x j
k

⎤
⎦JT
⊕ (34)

where J denotes the Jacobian, i.e., the matrix of partial
derivatives

J⊕ :=
∂xi

j ⊕ x j
k

∂
�

xi
j , x j

k

� = ∂xi
k

∂
�

xi
j , x j

k

� (35)

= �
J1⊕ J2⊕

� =
�
∂xi

k

∂xi
j

∂xi
k

∂x j
k

�
. (36)

TABLE III

CRITICAL VALUES tα COMPUTED WITH (39) FOR DIFFERENT CONFIDENCE
LEVELS α AND GAUSSIAN DISTRIBUTION DIMENSIONALITIES

If the relationships xi
j and x j

k are independent,
i.e., �(xi

j ,x
j
k )
= 0, (34) can be rewritten as

�xi
k
≈ J1⊕�xi

j
JT

1⊕ + J2⊕�x j
k
JT

2⊕. (37)

APPENDIX C
α-KERNEL CONSTRUCTION

A Gaussian distribution N (x̂, �x) describing a state’s
belief b is continuous and extends over the entire belief space.
For the required computations, b is represented on a discrete
support Kα(�x), referred to as α-kernel, with resolution h and
size md at each dimension d as defined by

md = 2 ceil

�
tασd

h

�
+ 1 (38)

where the kernel size md is always odd, σd is the standard
deviation of �x along dimension d , and the critical value
tα is computed from the desired confidence level α ∈ [0, 1]
as

tα = −φ−1

�
1

2
(1− α)

�
(39)

where φ−1(·) denotes the quantile function of the
d-dimensional Gaussian normal distribution describing
the system’s belief b. Table III shows some critical values tα
according to commonly desirable confidence levels α for 1-D,
2-D, and 3-D Gaussian distributions.

Noteworthy is that the confidence level α involves a tradeoff
between computational performance and accuracy. On one
hand, α bounds the extend of the resulting Kα(·) over the belief
space, thus determining the total number of voxels in the ker-
nel and, consequently, having an impact on the computational
load of the probabilistic collision checking formulated in (23).
On the other hand, (23) introduces a constant conservatism α,
implying that α must be selected such that α > psafe. Other-
wise, the method will not find any valid state. This requirement
is implicit in the probabilistic collision checking formulated
in (23).

The value of each cell n ∈ Kα(�x) can be drawn from
the corresponding Gaussian distribution as hDN (x | x̂, �x),
where hD is a normalizing constant according to the kernel
resolution h and x is the point coordinate of n referenced at x̂.
For the particular case of a multivariate Gaussian N (x̂, �x)
with diagonal covariance matrix �x, its elements can be
written as �i j = σi

2Ii j , where Ii j are the matrix elements
of the identity matrix (so Ii j = 0 if i �= j and Ii j = 1).
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Then, the multivariate Gaussian with diagonal �i j = σi
2Ii j

factorizes into a product of univariate Gaussians as

N (x | x̂, �x) = hD
D�

i=1

N
�
xi

�� x̂, σ 2
xi

�
(40)

where, for any arbitrary positive definite covariance
matrix �x, the resulting distribution is normalized. The
property in (40) provides a computationally efficient strategy
to build any d-dimensional kernel K(·) from 1-D Gaussian
signals.

It is worth mentioning that the kernel computation can be
conducted and stored offline for different kernel sizes. At the
running time, the planner would uniquely need to retrieve
in a lookup table fashion the required kernel. Although this
is an option to speed up the performance of the presented
probabilistic collision checking, the implementation in this
work computes the kernels online.
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Critical Review - Closing

In this part of the thesis, we have explored the applicability of behavioural abstractions to
address motion synthesis problems that are intractable with traditional methods. In
particular, we have framed the challenge of planning in unknown environments under
kinodynamic and probabilistic constraints. To that, we formalised a strategy that extracts and
leverages behavioural abstractions on-the-fly to solve the ever-changing motion synthesis
problem in bounded time. To conclude this part, we provide a summary of the key results and
discuss how the findings form a coherent piece of this thesis.

13.1 Results

Our work on behavioural abstractions to tackle ever-changing high-dimensional uncertain
planning problems motivated contributing on many fronts. We supported our findings with
experimental evaluation, in both synthetic environments and real-world robotic platforms. In
particular, we showed the following results:

Chapter 12
(first)

We demonstrated the proposed multi-layered to enable the solving of particularly
high-dimensional and complex problems. We provided a throughout analysis of the
performance of the two proposed strategies for adaptive lead-bias exploitation
under varied parametrisation. Results showed that the proposed multi-layered
planning strategy enables rapid exploration of the high-dimensional belief space
while preserving asymptotic optimality and completeness guarantees.

Chapter 12
(second)

We demonstrated our probabilistic state validation routine supports the
multi-layered planner in the need of online motion synthesis. A thorough
benchmark against state-of-the-art uncertainty-aware state validation methods
shows that the proposed approach provides a tighter probability bound (higher
accuracy), and does so by several orders of magnitude faster.
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Chapter 12
(third)

We demonstrated the overall framework as a whole in real-world in-water
experiments using a non-holonomic torpedo-shaped autonomous underwater
vehicle (AUV), and simulated trials in the Stairwell scenario of the DARPA
Subterranean Challenge 2019 on a quadrotor unmanned aerial vehicle (UAV). The
results demonstrated the efficacy of the method as well as its suitability for
systems with limited onboard computational power.

13.2 Discussion

This part of the thesis has reported the work on online behavioural abstractions to rapidly
solve planning problems that are ever-changing, and intractable with traditional methods. Our
efforts in that direction have resulted in two notable contributions that enable dealing with high-
dimensional problems online, provide probabilistic safety guarantees in planning problems with
stochastic nature, while being suitable for systems with limited onboard computation power:

Chapter 12
(first)

A multi-layered planning strategy that promotes faster exploration of the high-
dimensional belief space with asymptotically optimal and completeness guarantees.

Chapter 12
(second)

An efficient evaluation and tighter bound on the computation of the probability of
collision than other uncertainty-aware planners in the literature.

The first stage of our multi-layered planning strategy aims at extracting relevant behavioural
navigation hints. Despite this objective is similar to that more generic of Part II, the contributed
technical approach is completely different given the contrasting availability of prior information
for the underlying problem. Then, similarly to the aims in Part III, the second stage pursues
leveraging the computed lead to calculate a trajectory that satisfies all constraints imposed in
the planning problem. Yet, oppositely to the manipulation applications targeted in the previous
parts of the thesis, while navigating both stages occur recursively on-the-fly to counteract the
lack of prior information and satisfy the online computation constraints.

Importantly, the proposed framework is not restricted to the presented experimental evaluation
nor robotic platform; any other mobile robot, either terrestrial, maritime or aerial system can
benefit from this work. In fact, work developed in this part of the thesis has been employed in
other research lines within the ORCA Hub project, e.g., [122, 31, 29, 28, 30, 173, 172], which
include a variety of robotic applications and platforms.

We have discussed some interesting directions for future work in the corresponding manuscript.
We are particularly keen on extending our contributions to leverage distinctive environmental
features to guide the exploration of the space. We elaborate on this thought in Chapter 15.
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Conclusions

“The more I learn, the more I realize how much I don’t know”

— Albert Einstein

In this thesis, we have explored motion synthesis methods via leverage of problem abstractions to
make real-world deployment in complex environments practical. To this end, we have contributed
several novel approaches to motion planning that account for abstractions of the problem at hand
to ease and speed up the solving. Primarily, this thesis has focused on abstractions for robotic
manipulation tasks but, the later part of the thesis, investigates the application of our theoretical
findings to other problems such as mobile-base navigation in unknown environments.

First, in Part II, we explored approaches to bootstrap robotic behaviour. Here, we first
proposed storing experienced motions in a library of motions, to then recall it to bootstrap
robotic behaviour (see Chapter 4 [123]). We then introduced an affordance-guided strategy to
inform the bootstrapping of the library of motions (see Chapter 5 [5]).

Then, in Part III, building on the capability of bootstrapping robot behaviour from a library
of experiences, we focused on the challenge of generalising those experiences to novel task
contexts. Our first contribution on this thread has been a hierarchical framework that
modulates an ongoing DMP-encoded policy to avoid obstacles (see Chapter 8 [124]). Our
second contribution are two new experience-based planners (the uni-directional
experience-driven random trees (ERT) and its bi-directional version ERTConnect), which
follow a tree sampling-based strategy to iteratively exploit a single prior path experience to
ease the capture of connectivity of the space (see Chapter 9 [125]).

Finally, in Part IV, we elaborated on the leverage of a lead to guide a planner’s search towards
relevant parts of the planning space, to solve efficiently challenging path planning problems
from which, mostly, there is no available prior knowledge. We motivated this case with the
ever-changing high-dimensional uncertain planning problem posed by a mobile base robot
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navigating in an unknown environment. On this thread, we made two novel contributions that
make such complex problem tractable: (i) a multi-layered planning strategy that promotes
faster exploration of the high-dimensional belief space with asymptotically optimal and
completeness guarantees, and (ii) an efficient evaluation and tighter bound on the computation
of the probability of collision than other uncertainty-aware planners in the literature (see
Chapter 12 [126]).

Then, in a similar vein as our planners in Chapter 9 [125], our scheme’s second layer exploits
the computed lead to guide the connectivity search towards relevant parts of the belief space.

Throughout this thesis, both theoretical and experimental development has been conducted
without losing sight of the connection of motion planning to other tightly linked robotic
problems. As such, we tested our methods on a range of settings in both simulation and
real-world experiments: from high-dimensional humanoids and robotic arms with a focus on
autonomous manipulation in resembling environments, to high-dimensional kinematic motion
planning with a focus on autonomous safe navigation in unknown environments. Furthermore,
we have been able to apply, diversify and motivate some continuing work from the research in
this thesis, such as on the study of affordance-driven grasp and path planning [121, 8, 6, 7, 4],
to explore synergies between task and motion planning [31, 29, 28, 30], to investigate planning
strategies for navigation, inspection, and digital-twin applications [127, 122, 173, 172], and to
research shared-autonomy strategies to keep the human-in-the-loop in the autonomy
pipeline [148, 103, 27, 3]. We have made some of our contributions open-source hoping they
will be of use to the robotics community at large.
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Future Directions

“Imagine, and it shall be. There are no limits”

— Evelyn Skye

The research conducted in this thesis has exposed a range of possible avenues for future work.
While we investigated some of these alongside the main research direction of this thesis, e.g., [7,
122, 31, 29, 173, 27], many others remain unaddressed. We detail several of these below.

15.1 Single-, Joint- and Cross-trajectory Behavioural Models

In this thesis, we focused on behavioural models represented as trajectories, and the exploitation
of those based on a single best candidate policy. Such an approach has proven to be versatile
to tackle a variety of motion planning problems efficiently. There are several lessons learned
in the course of our research that point at attractive ideas to investigate further the usage of
trajectories for behaviour-driven motion synthesis.

Employing raw trajectories has the benefit of no information loss; all behavioural samples are
kept at the cost of a large memory footprint. A remarkable challenge that we have not delved
into is to pick the most relevant sample to the underlying planning problem. In Chapter 9 [125],
inspired by [17], we estimated the suitability using the Euclidean distance between the start and
goal configurations of the current planning problem, with that of the trajectories. We verified
the approach to select a unique prior from a library of experiences experimentally; although it
led to good results, the topic merits further attention. Potentially, other metrics besides distance
and trajectory similarity measures (see relevant reviews [108, 159]) might represent better the
suitability of a behavioural sample on a novel task instance. Similar metrics might potentially
aid in identifying the most distinctive subset of trajectory samples that promote generalisation
in new task instantiations and behavioural sparsity, thus lowering the memory footprint.
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Alternatively to employing raw trajectories, these can be encoded jointly to reduce storage load.
To this aim, one can use resources from the machine learning community to derive a policy
from a set of raw trajectories, or fuse them to compose a roadmap (see seminal work [37]).
Both options are promising behavioural supports moving forward, as they enable inferring and
recalling trajectory samples and, indirectly, leveraging multiple experiences simultaneously, such
that the local exploration is conducted with the most suitable segment in the library. Such a
strategy would potentially allow formalising behavioural models that are more robust to changes
in the planning context.

At this point, we have argued the need for more informative models for each particular
behaviour. An interesting thought is that when dealing with a particular task there might be
relevant information in non-related behavioural models, such as invariant-constraint robot
state sample. An exciting avenue is to encompass all behavioural models in a single
dynamic-weighted roadmap, where the weight of the edges changes according to the task. That
way, instead of focusing exploitation within a unique categorical behaviour, the
dynamic-weighted roadmap would prioritise exploitation of problem-related motions while
allowing to exploit invariant constraints seen in other tasks.

15.2 Constraint- and Environment-aware Exploitation

In this thesis, we have mostly focused on the leverage of the motion plans, i.e., trajectories.
Nonetheless, there are other elements in the planning problem that can be taken into account to
define behavioural abstractions in favour of efficient motion synthesis, e.g., motion constraints,
performance preferences and environmental information.

Task constraints and performance preferences, such as exerting a particular force/torque or
turning a valve (see relevant survey [87]), optimising motion according to a desired metric, for
instance, length or smoothness (see relevant summaries [176, 47]), or producing human-favoured
motions (see relevant study [109]), are common in many planning problems. While some of these
requisites can be enforced within exploratory routines, they tend to lead to long computation
times. A potential alternative could be leveraging behavioural samples that already satisfy, or
were obtained, under these constraints. Intuitively, if a solution to the current planning problem
lies in the neighbourhood of a behavioural sample, the invariant robotic constraints encoded in
the sample itself are more likely to prevail and thus, ease the planner’s computations. Applying
some of the findings in this thesis to constraint- and preference-aware motion synthesis is an
exciting area for further investigation.
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Leveraging environmental information to bias search towards interesting regions of the space
has recently demonstrated significant progress on speeding up the motion synthesis
process, e.g., [67, 98, 34, 114]. Exploiting environmental features alongside trajectory-encoded
behaviour is a promising line for future work; environment-derived robot state samples can, for
instance, indicate middle waypoints where to bias a behaviour. Likewise, environmental
collisions and constraints violations can be useful to determine the most suitable candidate
among multiple samples of a behavioural model or, when using a roadmap, to weight the
conflicting segments accordingly. Metrics reflecting these violations might aid in adjusting the
reliance on a selected behavioural sample, i.e., trade-off exploration and exploitation, by
regulating the neighbouring range or probability of exploration around a lead trajectory.

15.3 Multi-interpretation Planning Specifications

As prospects on robotics are towards enhanced autonomy, a robotic agent is expected to deal with
less structured planning specifications. Think of a robot in shared-autonomy with a human via a
multi-modal interface commanded to the task “place a bottle onto the table”. Such specification
is open to multiple interpretations at a planning level, as there might be multiple bottles to
choose from, multiple feasible grasp configurations on each bottle, as well as multiple possible
locations onto the table. Multiple interpretations imply the possibility to establish a trajectory
between multiple start and goal pairs. As thus, planning approaches need to cope with planning
problems that are not strictly delimited by a single start and goal configuration.

A seminal work addressing such a challenge is the task-constructor in [55], which draws multiple
hypotheses on each stage of a given task. Each hypothesis is corroborated with a motion synthesis
planner to validate the existence of a solution. The order in which hypotheses are checked is
according to multiple user-defined heuristics. Albeit this approach has proven to work for
complex task problems, its individual hypothesis checking can lead to long computation times.
An exciting avenue on dealing with multi-interpretation planning specifications is to consider all
starts and goals pairs when discovering the connectivity of the space, e.g. [59, 72]. Leveraging
such approaches altogether with behaviour-driven motion synthesis planners could potentially
speed up computations drastically.
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