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Tomasz  Luczyński ∗ Sean Katagiri ∗ Joshua Roe ∗ Èric Pairet ∗
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Abstract: This paper presents a robust underwater simultaneous localisation and mapping
(SLAM) framework using autonomous relocalisation. The proposed approach strives to maintain
a single consistent map during operation and updates its current plan when the SLAM loses
feature tracking. The updated plan transverses viewpoints that are likely to aid in merging the
current map into the global map. We present the sub-systems of the framework: the SLAM,
viewpoint generation, and high level planning. In-water experiments show the advantage of our
approach used on an autonomous underwater vehicle (AUV) performing inspections.
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1. INTRODUCTION

Underwater robots play a central role in the offshore sec-
tor, and deepwater operations would not be possible with-
out them. Currently, remotely operated vehicles are used
for most tasks and are teleoperated from a support ship or
platforms. However, with the rapid development of the off-
shore wind energy sector, and the inherent risk and cost as-
sociated with the deployment of human personnel offshore,
a revolution is happening Birk et al. (2018). remotely
operated vehicle (ROV) operators are moving onshore and
many technologies developed for AUVs are increasingly
being used to develop smart payloads for ROVs. They
enable remote operators to plan missions and supervise
operations at a higher level as confidence in the robustness
of the autonomy modules grows. Central to this is the
ability to embed on-board processing and decision making.
One key functionality required for asset inspection and
intervention is 3D mapping and navigation. Subsea, this
is challenging as it is a GPS-denied environment, acoustic
sensing is expensive and low-resolution and mainstream
vision-based approaches are brittle due to refraction, poor
illumination and low visibility. As such, visual SLAM can
struggle to maintain a good view of features to perform
tracking. To overcome this, we present a robust vision-
based autonomous mapping and localisation framework
which includes an active relocalisation procedure. This en-
dows the system with autonomous capabilities which seek
to maintain a single consistent map of the environment. 1
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1.1 Statement of Contributions

The novelty and main contributions of this paper can be
summarised as follows:

• An algorithm for finding viewpoints (poses) that offer
a high chance of relocalisation, based on the analysis
of the map built so far.

• A framework for autonomous relocalisation when
tracking of visual features fails, based on a high-level
planner able to deviate from its current objective and
create a temporal plan utilising suggested viewpoints.

• An experimental validation of the proposed approach.
Results demonstrate that our approach clearly out-
performs the competing approach.

2. RELATED WORK

In general, when tracking is lost, the best chance for a
SLAM system to continue mapping is to relocalise itself.
In SLAM, relocalisation is referred to as a state where the
system tries to utilise place recognition algorithms (e.g.,
Cummins and Newman (2011); Lowry et al. (2016)) to
detect a previously visited region in the accumulated map.
Place recognition algorithms used in relocalisation are also
commonly used in loop closing operations in case of the
SLAM frameworks based on pose graphs. Despite being,
algorithmically, very similar procedures, loop closing and
relocalisation serve very different purposes: former allows
for reduction of errors in the pose estimation accumulated
over time, whereas the latter helps with recovering track
of visual features or allows for joining disconnected maps
(Campos et al., 2020). Stachniss et al. (2004) presented
an active loop-closure during SLAM: by taking an oppor-
tunistic approach to revisit previously explored areas, the
uncertainty could be reduced.



In Bourgault et al. (2002) a robot selects a trajectory
according to a potential field based on the unknown areas
that are acting as an attractive force and a utility function.
This allows to find a balance between tracking known
features and exploration while remaining localised. Similar
approaches were presented in Lehner et al. (2017), for
terrestrial robots, and Chaves et al. (2016); Palomeras
et al. (2019b,a) for underwater robots. Other approaches
to reduce uncertainty were proposed in Teniente et al.
(2012) and Valencia et al. (2013), where the graph from
pose-graph SLAM is used as a belief roadmap (BRM). This
enables the robot to navigate between poses in the graph
and selecting paths that yield the lowest uncertainty.

The SLAM solution presented in this paper builds on our
previous work (Xu et al., 2021), an extension of ORB-
SLAM3 (Campos et al., 2020) suitable for underwater
environments. The SLAM system integrates dead reckon-
ing (DR) from internal sensors of the AUV (e.g., Doppler
Velocity Log (DVL), Inertial Measurement Unit (IMU),
and depth sensor). By endowing ORB-SLAM3 with DR
from internal sensors, it is able to estimate and track the
robot’s pose even when there are no visual features to
track (Vargas et al., 2021). However, as DR is based on
the integration of sensor data containing potential drift
and noise, it will have an error growing without bound
in pose estimation, and losing track of visual feature will
result in multiple maps weakly connected with DR. The
growing error will further cause the inconsistency of the
map as shown in Fig. 1a.

3. ROBUST UNDERWATER SLAM

Opposed to using active-SLAM to seek future loop-
closures, we look at improving the contingency of the map
continuously during operation. The argument behind this
is that features to track in the underwater domain are often
sparse and require observations from a short distance due
to limited visibility. Therefore, losing tracking of the object
being inspected leads to unbounded growth of the error in
the pose estimation until tracking is regained. Hence, if
tracking is not regained in a short enough time the error
can grow too large, such that finding the way back to
the structure is no longer feasible. Likewise, if the SLAM
system operates on multiple sub-maps, the cumulative
error between these might grow too large to be reliable
for global navigation (Pairet et al., 2018, 2020).

The problem we look at, to actively merge maps as soon
as a sub-map has been created, shares similarities with
active SLAM for loop closures. It does however differ
in the sense that our system will focus on solving the
map merge before continuing the exploration or inspection
and therefore should have a more reliable localisation as
opposed to using multiple sub-maps. While the problem
we try to solve is different than many aforementioned
active SLAM approaches, our approach has similarities to
BRM within the pose-graph of SLAM, but instead of using
the keyframes (poses) in the pose-graph as nodes able to
be visited, we use these to define a sampling space. The
sampling and evaluation of viewpoints for map merging
around the keyframes extends on Palomeras et al. (2019b).

(a) (b)

(c) (d)

Fig. 1. (a) depicts a set of misaligned sub-maps caused by
feature tracking loss and relying on DR. (b) shows
the ground truth. (c) illustrates the occupied voxels
and (d) the free voxels, in the OctoMap that is used
for path planning and viewpoint generation.

3.1 Image Acquisition

To enable a vision-based algorithm developed to work
in-air, like ORB-SLAM3, to be used underwater, a few
issues have to be addressed. Underwater images not only
often suffer from exceptionally challenging illumination
(low light, high dynamic range), but also from refraction-
based distortions and poor visibility due to backscatter. In
this work, we utilise earlier studies on these problems. The
hardware mounted on the ROV was designed especially
for close-range 3D inspections, to satisfy the conditions
of working in murky water ( Luczyński et al., 2019). The
custom design also allowed for applying a Pinax camera
calibration and image rectification model ( Luczyński et al.,
2017), which speeds up the deployment of the whole sys-
tem both in the research conditions and offshore. Finally,
the colour balance is also addressed with a state-of-the-art
algorithm (Bianco and Neumann, 2017).

3.2 Keyframe Selection

ORB-SLAM3, similarly to other visual SLAM solutions
based on pose graph, relies on the keyframes stored in the
graph and representing robot poses. ORB-SLAM3 main-
tains a set of keyframes and their connected map points
as the local map. Each keyframe stores the information
such as, the pose, feature points and its connection to
map points and other keyframes, which would be used
for optimisation and place recognition (loop closure). An
efficient keyframe selection and culling scheme are adopted
to provide good tracking robustness with limited compu-
tational resources.

To build the proposed relocalisation strategy, we rely on
these keyframes, already available in the ORB-SLAM3
framework. In order to avoid the change of map origin,
we only allow the merging of a sub-map with a prior map.



Once SLAM lose tracking of visual features, we evaluate
all keyframes in the previous map via the visual feature
quality, temporal and geometric relationship with the last
keyframe obtained before losing tracking. To this end, a
set of good candidates for relocalisation is chosen and sent
to the planner. Let us define the given keyframe as Ki

and a set of keypoints kp belonging to Ki and used in the

map as Kkp
i . The score S(Ki) given to each keyframe is

calculated as the highest integer s for which it is true that

at least s ∗ 100 of kp ∈ Kkp
i can be observed by s other

keyframes K1−s. E.g. S(Ki) = 6 means, that there are at
least 600 keypoints in Ki that are simultaneously observed
by 6 keyframes. In practice, S(Ki) is found by iteratively
checking the value of s. However, the condition required
to increase the value of s gets increasingly harder with
each step, therefore the score can be usually computed
with just a few iterations. That allows for easy separation
of useful candidates in a wide range of conditions, without
overwhelming the system with unnecessarily grainy metric.

3.3 Mapping for Planning

The SLAM generates a sparse point cloud which, after
minor processing, can be used for navigation. We represent
the environment obtained via our SLAM as an OctoMap
(Hornung et al., 2013). An OctoMap is constituted of
voxels representing a 3-dimensional occupancy grid map at
variable resolution. The voxels in the OctoMap are initially
categorised as unknown. The point cloud generated by the
SLAM is used to find the occupied voxels in the octomap,
and the ray between the camera origin and associated
points in the point cloud marks voxels as free. The Oc-
toMap efficiently stores the voxels as an octree structure,
which optimises memory usage and provides fast access.
The map used for planning and viewpoint generation is
periodically updated from SLAM. An example of the oc-
cupied voxels generated through the SLAM’s point cloud
can be seen in Fig. 2.

4. AUTONOMY AND PLANNING

When a robot is performing a task, such as an inspection of
an offshore asset using SLAM, it is operating in an hostile
environment. For example, currents and waves generate
external forces that directly disturb the robot, and water
turbidity limits the robot’s exteroceptive visibility. In
this section we present an end-to-end planning framework
to counter the loss of feature tracking. The planning
framework is based on two modules: a path planner able to
generate viewpoints for relocalisation, and a mission and
high level planner that manage the tasks and actions to
perform.

4.1 Path Planner - Relocalisation Viewpoint Generation

As discussed in Section 3.2, for each keyframe in the map a
score can be obtained, describing how useful this frame is
in the context of relocalisation. Whenever the the SLAM
is lost, a set of the highest scoring keyframes K, belonging
to the map that just stopped being tracked, is passed to
the planner. For each keyframe Ki ∈ K, m collision-free
viewpoints are sampled. Them viewpoints’ sampling space

Fig. 2. The AUV has lost tracking. SLAM sends a set of
5 keyframes (green arrows). These keyframes spec-
ify the sampling space, and a new set of 5 view-
point deemed good for relocalisation is generated.
The keyframes are very dense, while the new sam-
pled viewpoints (orange arrows) are more sparsely
distributed, giving the set a probabilistically higher
chance to relocalise than the dense keyframes from
SLAM.

is centred around the corresponding keyframe with a spec-
ified maximum distance in x,y,z position and difference in
yaw angle. This gives a set of viewpoints around keyframe
Ki as Vi. The j:th viewpoint in Vi is noted as Vi,j . The
viewpoints in Vi are then evaluated using a utility function
to find a single viewpoint for each keyframe. The utility
function (1) is composed of 4 weighted reward functions.
Each reward function is in the range [0, 1]. The weights are
normalized such that the sum of the weights is equal to 1.0.
Hence, the sum of the 4 weighted utility functions is in the
range [0, 1]. A similar approach for sampling and evalua-
tion of a viewpoint was used in Palomeras et al. (2019b)
during next-best-view planning for frontier exploration.
However, utility function presented in this paper considers
additional safety features and the optimal sensing range.
The 4 reward functions are described below and can be
seen in (1):

• Distance, see (1a) – the closer to the keypoint the
higher the reward. The Euclidean distance as between
a keyframe and a viewpoint as |Ki − Vi,j |. The
maximum distance a viewpoint can be sampled from
a keyframe as Dmax. If |Ki−Vi,j | = Dmax the reward
is 0 and a if |Ki − Vi,j | = 0 the reward is 1.
• Occupied, see (1b) – The number of occupied voxels

seen from Vi,j is estimated by a simulated sensor in

the OctoMap is noted as Voccupied
i,j . The maximum

voxels seen by a viewpoint in Vi is max(Voccupied
i ).

The reward function for the number of observed
voxels is the ratio of the maximum viewed voxels of
a viewpoint in the set. This favours viewpoints that
view many previously observed voxels.
• Optimal Viewing Distance, see (1c) – the optimal

distance to view the closest cell at. This should
improve the quality of the collected data as it rewards
viewpoints closer to the optimal distance from the
structure. The reward for the function is 1 if the
distance is the same as the optimal sensing distance.



The reward decreases from the optimal towards 0 at
the minimum observation distance as well as towards
the maximum sensing distance.
• Safe, see (1d) – If the sampled state is in voxels

marked as free it is considered safe and the function
returns 1, otherwise 0. This is not the same as being
collision-free. But this is within a region that has been
sensed as free, instead of occupied (a sample that does
not pass the collision check is discarded) or unknown
(neither free nor occupied).

u = dwd + owo + cwc + sws (1)

d =
Dmax − |Ki − Vi,j |

Dmax
(1a)

o =
Voccupied
i,j

max(Voccupied
i )

(1b)

c = optDist(Vi,j) (1c)

s = safe(Vi,j) (1d)

By selecting the sampled viewpoint with the highest utility
for each of the n keyframes we obtain a set of viewpoints
that have a high probabilistic likelihood to succeed in
relocalising the robot. The set of relocalisation viewpoints
is passed to the high level planner to update the current
plan to focus on relocalising before to continuing its
current objective. An example of how a set of keyframes
are used to generate relocalisation viewpoints when the
robot has lost tracking can be seen in Fig. 2.

4.2 Autonomy Framework - High Level Planner

Automated planning technologies have been successfully
introduced in a growing number of underwater applica-
tions for solo (Maurelli et al., 2016) and multi-AUV
(Carreno et al., 2020) missions to provide the high-level
reasoning of the task. AI planner solutions guide the robot
to implement a set of actions (plan) that solve mission
goals according to its capabilities, which the problem’s
model defines. In this work, we use the temporal planner
OPTIC (Benton et al., 2012), which obtains more real-
istic plans supporting concurrent actions, synchronising
multiple tasks, and handling deadlines. The task planning
approach finds a plan that leads the robot to explore a set
of points in the environment to inspect a structure. The
problems we solve follow the temporal planning problem
representation described by the Planning Domain Defini-
tion Language (PDDL) version 2.1 2 (Fox and Long, 2003)
with continuous effects. A temporal planning problem is
defined as a tuple:

PT := 〈P,V,A, I,G, T 〉, (2)

where P is a set of propositions defining the available
resources in the platform and the environment’s proper-
ties; V is a set of fluents that describes the platform and
world conditions that can change over time; A is a set of
instantaneous and durative actions; I is the initial state
defined by the propositions and fluents (P ∪ V), and G is
a set of goals, where each goal g ∈ G is defined as p ∪ v,
where p ⊆ P and v ⊆ V; and T is a set of time windows.
Each time window is defined using Timed Initial Literals

2 PDDL2.1 introduces the notion of time in the action definitions.

Time: (Action Name) [Duration]

0.000: (navigation bluerov2 wp0 wp10) [10.000]

10.001: (turnon-light bluerov2 wp10) [2.000]

12.002: (map bluerov2 wp10 wp11) [10.000]

22.003: (map bluerov2 wp11 wp12) [10.000]

(...)

72.007: (navigation bluerov2 wp40 wp41) [10.000]

82.008: (turnoff-light bluerov2 wp41) [2.000]

84.009: (recover bluerov2 wp41) [1.000]

Fig. 3. A fragment of an original temporal plan solution
for the image reconstruction of a structure.

(TILs) which define the time t ∈ T at which particular
propositions of p ∈ P become true/false. Each a ∈ A is a
tuple 〈apre , aeff , adur 〉, apre is a set of conditions that must
hold for the action to be applicable, aeff is the set of action
effects, and adur is a set of duration constraints. For in-
stance, our domain defines the durative action navigation
which specifies as preconditions for its implementation to
know the robot’s actual position (at ?r - robot ?wpi
- waypoint), its availability (available ?r - robot)
and the true connectivity between the initial and the
final point where the AUV needs to navigate (connected
?wpi ?wpf - waypoint). The effects of implementing this
action are the robot’s position changes (at ?r - robot
?wpf - waypoint) and the new waypoint is inspected
(inspected ?wpf - waypoint). In addition, we can de-
fine a set of properties related to the robot capabilities
such as proposition (camera equipped ?r - robot ?s -
sensor) which is a precondition required to implement
actions that depend on a camera

The mission plan ΠT generated by OPTIC to solve the
PT can be seen as a set of tuples πt := 〈a, t, d〉, where
a ∈ A, t is the action starting time and d and the
action’s duration. A durative action a hold t ∈ R≥0 and
d ∈ R>0, where R≥0 = {x ∈ R |x ≥ 0} and R>0 = {x ∈
R |x > 0}. Fig. 3 shows an example of a plan solution
for the image reconstruction of a structure using the AUV
(BlueROV2). The mission goals are to inspect a set of
points 3 around a structure to obtain its image recon-
struction. Therefore, problem’s goals can be (inspected
wp10) ... (inspected wp41). One of the advantages of
task planners is that we can obtain plans that reach goals
associated with different types of action and requirements,
assuming we have domain actions that support the goal
execution. For instance, the actions to turn the AUV
lights and recovery support the implementation of goals
(light on wp10) and (recovered wp41), which are not
related to the structure’s reconstruction goals. However,
they represent another set of mission requirements defined
by the operator at the initial state.

Temporal planning solutions have proved their effective-
ness while implementing AUV missions. However, such
planners focus on deterministic planning models with pre-
dictable outcomes and completely known initial states.
These characteristics limit the applicability of temporal
planners to solve many missions in the underwater do-
main that require algorithms reasoning about uncertainty
considering the environment is highly dynamic. In this
paper, the problem we solve where the system can lose

3 The set of points are generated considering we have a notion of the
distance between the robot and the structure centre. The algorithm
defines a set of coordinates to explore based on the number of points
the AUV needs to reach for structure mapping.



Fig. 4. High Level task planning architecture. The SEA
provides robustness to the automated planning sys-
tem dealing with unexpected situations during plan
execution.

track during the mission due to multiple external effects is
a clear case where temporal planners are not, in principle,
the optimal option. Our approach provides a solution to
this issue while keeping the OPTIC planner in place as
the problem solver. We introduce in our planning frame-
work a new element called Situational Evaluation and
Awareness (SEA) (Carreno et al., 2021), which creates a
bridge between plan reasoning and execution to maintain
the system running for long-term periods avoiding missing
failures. SEA is a failure solver which acts when failures
occur, driving the robot from the failure state by proposing
alternative sub-plans. SEA makes a diagnostic of the dy-
namic environment to identify the type of failure and offers
alternatives solutions to the planner that allows the system
to recover before executing the remaining goals from the
original mission. Fig. 4 shows the high level planning ar-
chitecture which connects with ROSPlan (Cashmore et al.,
2015) to execute the high-level plan:

• Mission Interface includes the domain and problem
that describe the requirements from the operator and
the properties of the world we can encapsulate in the
model.
• Planning Interface includes all the available knowl-

edge at the planning time to generate the problem and
plan solution 4 which is parsed and dispatch to the
Execution Interface. Intermediate Mission Require-
ments extend the operator’s Mission Requirements
that SEA introduces when failures occur during the
plan implementation. SEA receives feedback from the
knowledge component in the planning process and the
Plan Execution to define the propositions to change
and goals to add to avoid failures. Besides, SEA is
connected to the World Model thought and ontology
that defines the possible type of failures associated
with the environment. SEA can force the actual plan
execution based on failure accounted using the direct
connection with the Execution Interface.
• Execution Interface takes the dispatched action by

the Planning Interface and translates it to action

4 Actual planning times are restricted to 5 sec. (maximum) consid-
ering the dynamics of the environment.

Time: (Action Name) [Duration]

0.000: (navigation bluerov2 wp0 wp10) [10.000]

10.001: (turnon-light bluerov2 wp10) [2.000]

12.002: (map bluerov2 wp10 wp11) [10.000]

-------------------------------------------------------------------

0.000: (map bluerov2 wpra_0 wpr0) [0.500]

0.501: (map bluerov2 wpr0 wpr1) [3.000]

3.502: (map bluerov2 wpr1 wpr2) [1.200]

-------------------------------------------------------------------

0.000: (map bluerov2 wpra_1 wp11) [2.500]

2.501: (map bluerov2 wp11 wp12) [10.000]

(...)

62.506: (navigation bluerov2 wp40 wp41) [10.000]

72.507: (turnoff-light bluerov2 wp41) [2.000]

74.507: (recover bluerov2 wp41) [1.000]

Fig. 5. A fragment of an original temporal plan and the
recovery plan introduced as a result of failures.

commands understandable for the AUV. The Execu-
tion Interface acts as a bridge providing the Sensing
Information used to determine the quality of plan
implementation and helps SEA identify the failure
source. This interface embeds the low-level algorithms
that allow the performance analysis of individual
actions and informs the system about the execution
process.

• Robot Interface includes the robotic platforms we
can use in the mission. This interface provides all
necessary data to evaluate the mission’s execution.

SEA maintains the mission survivability and adaptability
over long-term missions. The evaluator forced the gen-
eration of recovery plans which are introduced in the
execution of the original plan to solve particular failures.
Fig. 5 shows an example of a solution where the execution
of the original plan (see Fig. 3) is interrupted, as a conse-
quence, SEA receives a notification the AUV has lost its
localisation when executing and action (action in red). In
this case, SEA identifies the type of failure and reasons
for the alternative plan that makes the robot recover. The
system takes the best possible points to recover, provided
by the path planner for viewpoint generation, and sends
a set of new goals and knowledge to the Planning System
that allows OPTIC to generate a new plan (recovery-plan).
The Planning Interface generates a new plan that forces
the robot to navigate these points to localise (actions in
blue). Suppose during the execution of the recovery plan
(blue); the AUV achieves the relocalisation. In that case,
the SEA determines the recovery plan is completed, even
when not all actions are achieved. The system will then
replicate the original plan’s incompleted mission goals to
keep with the mission implementation. Suppose the AUV
completes the recovery plan (intermediate), and relocali-
sation is not achieved. In that case, the system will ask for
new relocalisation points to maintain the robot exploring
the area looking for the map merging before executing
the incomplete mission goals in the Mission Requirements.
Our approach can deal with different failure types, while
considering their risk level. The system embeds a recovery
mechanism to deal with unexpected mission failures that
includes communication with an operator.



(a) (b)

Fig. 6. (a) The facilities used for testing at Heriot-
Watt University. The artificial structure was used for
inspection. (b) The AUV during an inspection.

5. EXPERIMENTAL EVALUATION

We deploy the proposed framework on a BlueROV2 5 to
perform an autonomous inspection of an artificial struc-
ture (see Fig. 6). Our BlueROV2 is a fully ROS-enabled
(Quigley et al., 2009) 6 degree of freedom (DoF) ROV
with 4 vertical and 4 horizontal thrusters, with a DVL 6

integrated for DR, a stereo vision system, and a back seat
driver for autonomous operations, enabling the ROV to
operate as an AUV. The artificial structure to inspect is
placed in the middle of a 12× 12× 2.5 metres water tank
at Heriot-Watt University. The purpose of the test is to
assess the capability of our proposed approach to maintain
a single consistent map during autonomous operations.

We compare the autonomous relocalisation framework
presented in this paper with two independent runs of an
autonomous waypoint controller. We set our viewpoint
generation to get 100 samples around each keyframe with
the following weights: wd = 0.1, wo = 0.6, wc = 0.2 and
ws = 0.1. The sampling space is set to ±0.3 metres for x
and y, ±0.1 metres in z (depth) and ±0.4 radians for yaw
around the keyframe. Both approaches have the same set
of waypoints to explore. The waypoints construct a vertical
lawnmower pattern consisting of 24 waypoints around the
structure. In all inspections, we forced the SLAM to lose
feature tracking by replacing the images from the cameras
with featureless black images. This was done at the same
waypoints in all trials to create a controlled comparison.
Fig. 7 depicts the number of sub-maps generated during
the inspection. It can be seen that the proposed approach
is able to relocalise and merge the maps in a short amount
of time (blue line), whereas both runs of the autonomous
waypoint controller result in multiple sub-maps (red and
green lines). Fig. 8 illustrates the resulting map at the
end of the inspection for each trial. While the autonomous
inspection without our relocalisation generates 4 different
sub-maps (indicated in different colours in Fig. 8c-8d),
our approach ends with a single consistent map of the
structure (see Fig. 8a-8b). These results demonstrate that
our approach can autonomously cope with feature tracking
loss by triggering relocalisation plans that allow merging
sub-maps.

5 https://bluerobotics.com/store/rov/bluerov2/
6 https://waterlinked.com/product/dvl-a50/

Fig. 7. The number of maps along the duration of the
inspections. We introduced controlled 15 seconds of
lost feature tracking (black outs (BO)) at the same
3 waypoints during the inspections. The graph shows
the scenarios as in Fig. 8.

A clear advantage of the proposed system can be seen in
Fig. 9. While moving around the corner of the structure
(as seen in Fig. 6), the vehicle naturally loses track of
the features. When this happens, our system generates
a new map (magenta coloured map in Fig. 9a) and the
SLAM notifies the planner that it has been lost along with
keyframes from the previous (original) map seen in blue.
A set of viewpoints that should help the AUV to relocalise
in the prior map is generated for the high-level planner to
include in its temporal plan. The AUV executes the plan
to relocalise, leading to a merge of the two maps and being
able to proceed around the corner without losing track, as
the map now contains features to track on both sides of
the corner.

6. CONCLUSION AND FUTURE WORK

In this paper we have presented a framework for au-
tonomously relocalisation when a SLAM system loses
tracking. This enables the system to maintain a single
consistent map instead of multiple sub-maps and hence
increasing reliability. We present the sensor and vehicle
set up along with the framework consisting of image-
enhancing methods used to improve the quality of the
captured images, the SLAM system, a viewpoint generator
to increase the chance of relocalisation and a high-level
planner. We show that our proposed approach is able to
finish inspections with a single map by actively searching
for map merges when tracking is lost in SLAM. We show
that executing the same inspection mission, but without
using the adaptive plan when features are lost, results in
multiple sub-maps at the end of the mission.

The current system expects to continuously have features
to track, as it will otherwise start a relocalisation pro-
cedure. For the future, we are extending the framework
with an analytical procedure to determine if relocalisation
should be used or not. This is as the robot might need to
move through areas in which it will not be able to perform
feature tracking, e.g., in open water, between structures.



(a) (b)

(c) (d)

Fig. 8. In (a) the final map when using the proposed approach for robust SLAM using relocalisation can be seen. (b)
shows the full trajectory of the robot based on the pose estimates from SLAM. (c) and (d) shows two scenarios
where the robot was following the same waypoints as in (a), but without the proposed autonomous relocalisation
procedure. The proposed approach has a single consistent map at the end of the inspection, while not using our
relocalisation approach results in 4 sub-maps.

(a) (b)

Fig. 9. (a) The AUV is moving around a corner, by doing so it loses track of the current map (blue) and creates a
second map (magenta). (b) The relocalisation procedure is initiated, which moves the robot to a state in which it
is able to merge the two maps before continuing the mission with a single consistent map.
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 Luczyński, T., Pfingsthorn, M., and Birk, A. (2017).
The Pinax-model for accurate and efficient refraction
correction of underwater cameras in flat-pane hous-
ings. Ocean Engineering, 133(March), 9–22. doi:
10.1016/j.oceaneng.2017.01.029.

Maurelli, F., Carreras, M., Salvi, J., Lane, D., Kyriakopou-
los, K., Karras, G., Fox, M., Long, D., Kormushev, P.,
and Caldwell, D. (2016). the pandora project: A success
story in auv autonomy. In IEEE OCEANS – Shanghai.
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