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Abstract—Autonomous Underwater Vehicles (AUVs) are be-
coming increasingly important for different types of industrial
applications. The generally high cost of AUVs restricts the access
to them and therefore advances in research and technological
development. However, recent advances have led to lower cost
commercially available Remotely Operated Vehicles (ROVs),
which present a platform that can be enhanced to enable a high
degree of autonomy, similar to that of a high-end AUV. In this
article, we present how a low-cost commercial-off-the-shelf ROV
can be used as a foundation for developing versatile and afford-
able AUVs. We introduce the required hardware modifications
to obtain a system capable of autonomous operations as well as
the necessary software modules. Additionally, we present a set
of use cases exhibiting the versatility of the developed platform
for intervention and mapping tasks.

Index Terms—Autonomous Underwater Vehicle, Remotely Op-
erated Vehicle, Hardware, Underwater Manipulation, Autonomy,
Robot Operating System

I. INTRODUCTION

ROVs were first used for recovering torpedoes in the 1950s.
Since then the technology has been adopted by a multitude of
industries as their main approach for subsea operations. These
robots have been previously utilized for tasks as diverse as,
drilling for mineral and rock sampling [1], video survey of
oil and gas platforms [2] and measuring the roughness of the
seabed [3]. However, continuous operation of ROVs can be
costly as they require constant monitoring from an operator,
who is connected with a tether to the ROV from a support
ship [4]. Operating such a system can be extremely costly,
with ships potentially being over £50M, and with reported
costs of £30K per day [5]. Additionally, this imposes a risk to
operators who need to perform the launch or recovery of the
ROV on the deck, specially under rough weather.

Nevertheless, in the search for reducing cost and miti-
gating the risk to operators, research has been focusing on
autonomous alternatives, such as AUVs. These vehicles, do not
require constant monitoring from operators, and can perform
different types of operations such as surveying [6] or pipeline
tracking [7] on its own. Autonomous operations can therefore
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Fig. 1: The developed AUV based on the BlueRov2 ROV

save a lot of time, as well as ease the deployment, which re-
duces the operative cost. It does however, depend on advanced
and reliable software, which increases the development cost.

Previous research has shown different types of AUVs con-
figuration and detailed how they can be constructed. Nessie-V,
a 6 Degree of Freedom (DoF) research AUV, was developed
by Ocean System Laboratory (OSL) at Heriot-Watt University
to be used in research focused on inspection and autonomous
missions [8]. Authors in [9] detail Girona 500, an AUV
with reconfigurable payload and propulsion system. In [10],
Sparus II AUV is described which is a 5 DoF vehicle.
Both Girona 500 and Sparus II are powered by Component
Oriented Layer-based Architecture for Autonomy (COLA2)
[11], and commercially available with a base cost of around
$50,000. The modularity of these robots makes them suitable
for multiple purposes including mapping and exploration. In
[12] an AUV for acoustic imaging surveys, the Ictiobot-40,
was developed by the INTELYMEC group. However, the
development of these systems from ground up is extremely
time-consuming and therefore not feasible for a large number
of scientists.

Today, we see a shift, where cheaper ROVs are entering
the market being affordable for hobbyists, small compa-
nies, and marine scientists. In this sense, the introduction of
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cheaper ROV and sensors enables the possibility to combine
commercial-off-the-shelf (COTS) products to create an AUV
at a lower cost and shorter time than building one from scratch.
However, as expected with a lower price, there are trade-offs in
terms of quality and capability. Most noticeable are the limited
depth ratings, on-board sensors and the effect of the thrusters.
The new affordable models are rarely rated for more than
100m depth, they lack navigational sensors to reliably estimate
their position, and due to their small size cannot handle well
heavy sea-currents or waves. However, new COTS ROVs can
be a good starting point in which an autonomous system can
be built on top of, leading to savings both in time and cost.
The cheaper ROVs can be improved with additional sensors for
navigation, and improved software. Additionally, most of the
applications of AUV are for usage in sheltered areas. Hence,
the depth rating is sufficient and they are not exposed to the
same amount of external disturbances as a work-class ROV at
open sea.

In this article we present how modern COTS products can
be combined to turn a ROV into an AUV for a fraction of
the price when compared with a hovering capable AUV. Our
design is based on the BlueRov2 heavy configuration, shown
in Fig. 1, a low-cost ROV capable of working in depth of up
to 100 m [13]. We provide in this article a full description of
the hardware modifications required for converting the ROV
to a fully autonomous AUV, as well as the required software
modules. Furthermore, we present real-time results for two
different use cases i) Stereo vision with slam ii) Underwater
payload manipulation. These results showcase the versatility of
our proposed AUV platform for performing a variable number
of underwater missions, while costing a fraction of the price.

The rest of the article is organized as follows. Section
II presents the base platform used. Section III presents the
hardware changes on the ROV, while Section IV presents
the required software modifications. Section V introduces two
use cases of the AUV, and finally Section VI presents some
conclusions.

II. BLUEROV2 PLATFORM

The BlueRov2 is a COTS ROV produced by BlueRobotics
[13]. This small ROV has a depth rating of 100 meters,
which provides excellent capabilities for exploring underwater
environments. The small footprint of the vehicle and its weight
under 12 kg make it easy to transport and deploy. Furthermore,
the BlueRov2 comes equipped with a tether of up to 300m,
which allows operators to control the vehicle remotely by
means of a dedicated software package. The ROV is internally
powered, using a li-ion battery of 14.8V and 18Ah, providing
ample energy autonomy.

Different versions of the vehicle are commercially available,
with a starting price of £2.5K. We based our design on the
BlueRov2 heavy configuration, which comes with 8 thrusters,
arranged 4 in vertical position and 4 horizontally. This thruster
configuration allows for a full 6 DoF control. Additionally,
the BlueRov2 is equipped with a set of sensors that serve as
feedback for basic control and exploration. The BlueRov2 has

an Inertial Measurement Unit (IMU) (including accelerometer,
gyroscope and compass), a depth sensor and a single-beam
echosounder. Furthermore, it also has a front-facing tilting
low-light camera, that can be enhanced with forward lights
for underwater environments. Moreover, the BlueRov2 also
has current and voltage sensing capabilities, as well as leak
detection circuits, extremely useful for secure underwater
operations. With regards to the computing capabilities, the
BlueRov2 has two computers on-board, the Pixhawk flight
controller [14] and a Raspberry Pi called a companion.

The BlueRov2 provides an exceptional starting platform
for developing an autonomous solution. Based on the current
system, in the following sections we will show what are the
required hardware and software modifications necessary for
transforming the COTS ROV into a fully functioning AUV.

III. HARDWARE

Commercially available ROVs often have a very limited
set of sensors, usually able to measure orientation and depth
and cameras to aid the operator. To enable the platform to
operate reliably in an autonomous fashion, additional hardware
is often desired. In this section, we describe the necessary
hardware modifications done on the BlueROV2 vehicle, to
obtain autonomous capabilities. We divide these modifications
in four subsystems: i) Navigation sensors, ii) Perception sen-
sors, iii) Data processing and decision-making system, iv)
Communication system.

A. Navigation Sensors

There are a number of additional sensors that can support
the quality of localisation, e.g., Ultra Short Baseline (USBL)
can provide an absolute pose information by acoustic com-
munication with an external transponder, IMU can provide
the orientation of the vehicle as well as angular velocity
readings, and Doppler Velocity Log (DVL) allows for fairly
accurate linear velocity estimates. Inertial sensors and DVL
are sometimes combined in a single unit to provide Dead
Reckoning (DR). The precision of the data provided by sensors
used in DR are usually related to the price. Designing a full
localisation system at a low budget requires therefore a careful
consideration as to which sensors should be selected.

In the interest of minimizing the cost, no USBL was added
to the systems used in our research. The ROV used comes
equipped with an IMU, including a magnetometer, and a
depth sensor. This gives absolute measurement for depth and
orientation but no reliable information about movement in
the x-y plane. To enable a full 6 DoF pose estimation we
equipped the vehicle with a DVL. We utilize the DVL A50,
from Waterlinked, due to its small footprint and accuracy on
low seabeads. Additionally, this DVL can be integrated with
the ArduSub Companion. The DVL was mounted to the lower
section of the AUV using a custom made 3D printed piece.
The piece was engineered to effectively mount and stabilize
the DVL while not affecting the beams of the transducer. With
this set of sensors on board the ROV, sensor fusion can then be
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used for pose estimation. More details on this will be presented
in Section IV.

B. Perception Sensors

Underwater perception is usually performed either by acous-
tics (sonar) or optical (camera) sensors. While cameras are
widely available and the data is easy to understand for humans,
the visibility in underwater environments is often limited due
to water conditions [15], thus cameras are mainly effective
at short distance (below a few metres). On the other hand,
sonars are not affected by the visibility in the water and are
therefore a more reliable choice when the visibility is limited.
However, sonars are expensive and can be hard to interpret
[16]. Furthermore, the resolution of the data generated by
sonars is also much lower, compared to cameras. Additionally,
multiple cameras can be combined into stereo or multi-
view setup, allowing for real-time 3D reconstruction, which
can be a very valuable source of information. We equipped
the platform developed in this paper with a set of stereo
cameras with a custom-made sensor. Additionally, we include
in the enclosures the required computational capabilities for
processing the visual information. When designing a stereo
camera system, there are a number of factors to consider.
Parameters like sensor type, lens, interface, and baseline
selection can be modelled to match the requirements specific to
the application [17]. However, many factors may change in the
development process, so two design principles are highlighted
in the paragraphs below.

First, we present the design of a single housing to incor-
porate all cameras. This allows for easy hardware integration,
camera synchronization, and testing various hardware config-
urations. Processing units can also be easily added to process
the images on-board. Fig. 2 (right) shows our vision system
designed according to this approach. This requires a dedicated
underwater housing, which is difficult to design and produce,
as well as much more expensive than typical cylinder-shaped
enclosures. Furthermore, the relative pose of the cameras is
fixed and cannot be changed. This approach is very useful
during development but loses most of its advantages in the
context of more mature systems, produced in larger numbers.

The second approach assumes that each camera is enclosed
in a separate housing, and the processing units are also kept
separately. This simplifies the construction of the enclosures
and the components can be easily rearranged as necessary.
Fig. 2 (left) shows the system implemented in the AUV,
following these principles. The downside of this approach is
that all components must be connected with underwater cables.
This may become challenging as the cable and connectors need
to rely on the protocol for data (and power) transfer, which
might not always be commercially available.

C. Data Processing and Decision-Making System

To enable robust and reliable autonomy, the system needs
to process large amounts of data, with as low latency as
possible. This is a challenging task that grows with each
software sub-module, especially in the context of algorithms

Fig. 2: Two vision system designed according to different
principles: left - a modular design with each component in
smaller separate enclosure; right - an integrated system with
the cameras and all additional electronics are enclosed in a
single housing.

responsible for data from the perception systems, which need
to process a large amount of data at a high rate. Therefore, the
selection of the embedded computers may heavily influence
the performance of the system. Simpler tasks, such as running
navigational sensors and handling the communication can be
done on cheaper units ( e.g., Raspberry Pi). Image data can
be processed efficiently on FPGA, but these systems are not
very flexible and increases the time for development, and
are therefore better suited to finished and stable software.
Therefore, since we are mostly working on the development
level, we utilized embedded computers from the Nvidia Jetson
family. Thanks to the included GPU, this boards are extremely
effective for testing and implementing different vision algo-
rithm in real-time. Additionally, with some care during the
mounting stage the aluminium water tight enclosures from
the BlueRobotics family can be utilised to provide efficient
cooling to the processing units.

D. Communication System

Ideally, an AUV should work independently, with little or
no communication with the operator. However, during the
development process to ensure safety of operations, a constant
communication link with the vehicle is required. This can be
achieved in a few ways. Typically, the development process is
conducted with a tether attached. This allows for continuous
observation of the systems and streaming data to the surface,
where more powerful processing units can be used. This allows
the development of algorithms on the surface, before deciding
on how much on-board processing power is needed on the
embedded computers. The tether can also be moved to a
communication buoy able to transfer data to the operator
wirelessly. The vehicle can then move more freely and all
the processing can be performed on-board, while at the same
time, high-speed connections are available for data monitoring
and debugging.

However, to fully become an autonomous vehicle the tether
should preferably be removed completely as this can be a
limitation for navigation, especially in structured and cluttered
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environments where the tether can get entangled. Without a
tether, the only reliable source of communication is by using
acoustic communication. There have been recent progress in
optical communication which can provide a high data transfer
rate but this has a limited range, can be highly affected by ad-
ditional light sources (e.g., the sun), and requires a direct line
of sight. Acoustic communication is usually low bandwidth but
capable of transmission for many kilometres. In the developed
platform, we removed the fixed tether connection present in
the ROV, and replaced it with an underwater connector from
suburban marine [18]. This connector utilizes the same pene-
trator size as the default Bluerov2, which allows for seamless
integration, but can be easily connected or disconnected as
required. The advantage of such a connector is that it allows
a plug and play characteristic to the AUV. In this way, the
vehicle can perform tasks autonomously by disconnecting the
tether completely, but if necessary, the tether can be easily
connected and used, for example, in conjunction with a com-
munication buoy to transmit mission information. This creates
a versatile research platform that allows for rapid testing of
algorithms and alternative communication techniques.

IV. SOFTWARE

In this section, we present the core software requirements
necessary for obtaining an AUV capable of following pre-
defined waypoints. The developed system consists of the
interpreter node, the pose estimation system, the control archi-
tecture and the waypoint pilot. This general architecture will be
referred as the navigation stack, upon which more intelligent
and sophisticated autonomous behaviours and approaches can
be built upon. Application examples of the navigation stack
are presented in Section V.

A. Interpreter Node

Commercially available ROVs usually come with a dedi-
cated computer to supply the user with an interface for control
and observation capabilities, e.g., by sending velocity or thrust
commands for controlling the movements of the ROV or
displaying sensor data as depth, heading and camera images.
This computer is defined as a frontseat driver and usually
has limited control capabilities. To enable more complex
autonomous behaviours, a backseat driver can be used. The
backseat driver is able to use the data from the ROV’s sensors
and command the ROV through an interpreter node, which
enables user-defined software to take control over the ROV.
The backseat driver can be deployed either as software on
the frontseat’s dedicated computer or as a separate computer
connected to the frontseat. The architecture of the frontseat
and the backseat can be seen Fig. 3.

Robot Operating System (ROS) is being used in many
robotics applications as the de facto standard for handling in-
ternal communication, offering an easy approach to a modular
software system [19]. Guided by this, we designed our system
to leverage ROS communications. ROS allows for modular
design and easy integration of additional modules, given that
the communication layer is fast enough to transport the data

Fig. 3: A navigation stack is used to connect the frontseat to
the backseat to enable autonomous operation. If the frontseat
can only be controlled using velocity/force commands a PID-
controller is used for waypoint navigation.

as needed. All our vehicles are equipped with 1 GB network
on board, which proved to be sufficient for performing the
communicating and control tasks.

Since the Bluerov2 includes a frontseat computer, we in-
clude an interpreter node that can be used to handle the
communication between the front and backseat. Furthermore,
this allows the rest of the system to be platform agnostic
and easily transferable between robots, allowing for faster
deployment of algorithms in different platforms.

B. Pose Estimation System

To enable autonomous navigation, the robot needs the
ability to estimate its own position. For terrestrial robots, the
access to GPS gives the possibility to measure an absolute
position in the world at a reasonably high frequency. However,
electromagnetic signals are absorbed in water. Hence, the same
technology cannot be applied for an AUV while submerged.
Instead DR can be used to estimate the current position based
on the internal sensors. To enable a full estimation in 6
DoF the vehicle utilizes the IMU for orientation, a pressure
sensor for depth and the DVL for velocity estimation. In our
navigation stack we use the Robot Localization Package from
ROS which fuses the sensor data through an Extended Kalman
Filter (EKF) [20] to perform DR. DR is however based on the
integration of data containing potential noise and biases, hence
the error and uncertainty can therefore grow without bound.
An alternative to DR is to use natural features as references
for estimating the pose using e.g., visual [21] or acoustic
[22] simultaneous localisation and mapping (SLAM). A third
approach is to use artificial landmarks such as acoustic beacons
to communicate with the AUV to perform Long Baseline
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(LBL), Moving-LBL (MLBL) [23], [24], or USBL [25]. The
different approaches can also be combined for improved pose
estimation [26], [27].

In our implementation, we use additional odometry from
a visual SLAM node fused with the DR generated by the
frontseat, to improve the position estimate, further described
in section V-A. However, if the frontseat is able of performing
position control based on its DR and we have another pose
estimation system, the two will drift apart over time. As we
assume that the SLAM odometry is more reliable over time,
due to the fusion of more data, we continuously need to
provide a transformation between the backseat estimation and
the frontseat estimation. This enables the backseat to operate
in one coordinate frame, while the frontseat operates in one
based on the DR.

C. Control System

To enable autonomous navigation between waypoints, a
position and orientation controller is needed. We employ
a generic navigation stack able to cope with two type of
controllers in the frontseat: 1) position control and 2) ve-
locity/force control (through e.g., a joystick). However, if the
vehicle’s frontseat is not endowed with this capability, the
position can be controlled from the backseat using e.g., a
cascaded PID-controller [28].

D. Waypoint Pilot

A waypoint pilot is used to keep track of which waypoints,
and in what order to visit them. The pilot serves as the
interface that all high-level planning algorithms will use to
control the robot. This node is able to improve the control of
the robot indirectly by interpolating a path between waypoints
as well as querying a path planner to find a collision-free path
between two waypoints. As most hovering capable ROVs and
AUVs are controllable freely in 3D, a geometric planner such
as informed Rapidly-exploring Random Tree* (I-RRT*) [29],
implemented using Open Motion Planning Library (OMPL)
[30] can ensure collision-free trajectories within the known
environment. If the vehicle needs to incorporate the kinematic
constraints of the robot, planners as presented in [31]–[33] can
be used.

V. EXPERIMENTAL USE CASES

A. Stereo Visual SLAM and Autonomous Inspection

We include preliminary results that show how mapping can
be performed with the developed system. The vehicle has
been used with stereo vision ORB-SLAM [34] with online
extrinsic calibration of a DVL, to incorporate the sensor
measurements (velocity, depth and orientation) into the visual
pose estimation. The approach was tested with ground truth
as seen in Fig. 4a. The SLAM system can be used by the
navigation stack to improve the pose estimation by taking
external features as reference in addition to DR.

For ArduSub: https://www.ardusub.com/developers/dvl-integration.html

1) Autonomous Robust Inspection: An integrated SLAM
with active relocalisation for map-merging/loop-closure was
deployed to test a robust underwater SLAM system [35].
The approach combines task-planning [36] and viewpoint
generation with the SLAM system to endow the system with
a map-merging procedure when visual tracking is lost. This
is based on random sampling in a region around key-frames
in the prior map, and simulating the sensor to find a location
with a high probability to relocalise based on previously seen
features.

a) High-Level Task Planning: AI planning solutions have
shown promising results while solving complex missions in the
underwater domain [37], including environment’s inspection.
For the use case we present in this paper, the high-level task
planner [36] generates a plan—sequence of actions that leads
the robot from the initial to the final state where all goals
are achieved—that allows the mapping of a structure amongst
other actions. The plan actions are dispatched to the low-
level system, including the hardware and software components
previously discussed in this paper, for execution. Our system
combines goal-based mission planning, based on a temporal
planner [38], and a knowledge-based framework to achieve
plans for dynamic problems. Therefore, this framework can
adapt the initial plan to maintain robot operability when
unexpected changes (not considered in the initial plan) oc-
cur. The knowledge-based framework encloses the Situational
Evaluation and Awareness (SEA) component. SEA is a failure
solver which acts when failures occur, driving the robot
from the failure state by proposing alternative behaviours or
updating its knowledge (that translate on the generation of
alternative plans). SEA evaluates the characteristics of failures
to complete the global goals (consider in the initial plan) while
introducing local goals that enable recovery from failure states.
The possible mission failures embedded in SEA consider the
tolerance analysis, anomaly and fault detection provided for
past experiments using different approaches [37]. SEA creates
a bridge between plan reasoning and execution to support
system robustness when running for long periods. Combining
the high-level planning approach and the low-level system,
including a viewpoint planning module, allows implementing
a robust structure mapping while mission survivability is
guaranteed. When poor mapping is notified∗ by the low-level
system, SEA advises the generation of a new plan that includes
local goals for AUV relocalisation concerning the initial map.
These local goals represent points provided by the viewpoint
planning module, where it is highly expected that the AUV
can merge the actual map with the original.

B. Payload Manipulation

Furthermore, we also include results for another use case
that shows how the AUV can be integrated with an underwater
manipulator to perform intervention missions. The use case
uses the Reach Alpha 5 [39] underwater manipulator also

∗The AUV losses track of the features it was using for localisation leading
to the failure notification. In this situation, the robot will find new features and
will start building a new map which is not optimal when mapping a structure.

5



(a) The AUV performing SLAM. The green line shows
ground truth (measured from an underwater motion tracking
system) and the blue line shows the SLAM pose estimate.

(b) The AUV performing an intervention mission in an underwater
environment using the Reach Alpha 5 manipulator.

Fig. 4: The developed AUV has multiple use cases such as autonomous mapping and underwater intervention.

integrated with ROS, for manipulating unknown payloads in
underwater environments.

In this test case, we focus on the low-level control of
an underwater manipulator, mounted on an autonomous un-
derwater vehicle, that was required to manipulate different
payloads of unknown shape and size. Due to the highly
nonlinear dynamics and the unknown hydrodynamics effects
of the payloads, the performance of the control system degrade
quite rapidly. To mitigate these effects, we developed a data-
driven model predictive controller, based on neural networks.
By utilizing a neural network, we were able to obtain a
more accurate model, that inherently takes into consideration
the environmental disturbances. Moreover, to account for the
variations caused by the payloads, we enhance the control
system with an online adaptive tuning strategy based on adap-
tive interaction theory. This adaptive mechanism takes into
consideration the prediction window used in the optimal con-
troller, allowing to take predictive tuning actions to improve
the overall performance. We named this algorith the Adaptive
Neural Network Model Predictive Control (AdaNNMPC) [40].
In Fig. 5 we show the results obtained when utilizing the
AdaNNMPC algorithm for a case study in which the arm is
manipulating an unknown object, in this case a wrench, as
shown in Fig. 4b. The reference position (rt) in joint space is
set as rt = [2.5, 2.0, 1.6, 2.0] radians. It can be seen how the
manipulator is able to reach the desired reference position in
a short time, and with minimal overshoot, compensating for
the variations caused by the payload.

VI. CONCLUSION

In this article, we have presented how a COTS ROV can
be turned into an AUV for fraction of the price, compared
to commercially available AUVs. Likewise, the time saved by
starting from an operating base platform compared to building
it from scratch is large, and the economical benefit makes it
the preferred approach for the majority of use cases. The paper
presents the hardware changes as well as the software stack

Fig. 5: AdaNNMPC algorithm with arm holding a wrench with
rt = [2.5, 2.0, 1.6, 2.0] radians

that constructs the core for an autonomous vehicle, capable of
navigating without human intervention as well as providing a
base on which to build more complex autonomous behaviours.
The vehicle used as an example is a BlueRov2, a low-cost
6 DoF vehicle. However, the software, which is building on
top of ROS to enable autonomous capabilities, and parts of
the vehicle has additionally been deployed on a Saab Seaeye
Falcon∗∗ ROVs, demonstrating the generality of the proposed
approach. We show a set of in-field experiments for mapping,
planning, and interaction such as autonomous inspections, and
manipulation, which has been carried out by the platform. The
experiments shows the complex tasks the AUV is capable at
performing but for a fraction of the price of commercially
available hovering capable AUVs.

∗∗https://www.saabseaeye.com/solutions/underwater-vehicles/falcon
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