
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021 1

Path Planning for Manipulation using Experience-driven Random Trees
Èric Pairet1,2, Constantinos Chamzas2, Yvan Petillot1, Lydia E. Kavraki2

Abstract—Robotic systems may frequently come across similar
manipulation planning problems that result in similar motion
plans. Instead of planning each problem from scratch, it is
preferable to leverage previously computed motion plans, i.e.,
experiences, to ease the planning. Different approaches have been
proposed to exploit prior information on novel task instances.
These methods, however, rely on a vast repertoire of experiences
and fail when none relates closely to the current problem. Thus,
an open challenge is the ability to generalise prior experiences
to task instances that do not necessarily resemble the prior.
This work tackles the above challenge with the proposition that
experiences are “decomposable” and “malleable”, i.e., parts of
an experience are suitable to relevantly explore the connectivity
of the robot-task space even in non-experienced regions. Two
new planners result from this insight: experience-driven random
trees (ERT) and its bi-directional version ERTConnect. These
planners adopt a tree sampling-based strategy that incrementally
extracts and modulates parts of a single path experience to
compose a valid motion plan. We demonstrate our method on task
instances that significantly differ from the prior experiences, and
compare with related state-of-the-art experience-based planners.
While their repairing strategies fail to generalise priors of tens of
experiences, our planner, with a single experience, significantly
outperforms them in both success rate and planning time. Our
planners are implemented and freely available in the Open
Motion Planning Library.

Index Terms—Manipulation Planning; Motion and Path Plan-
ning; Learning from Experience; Autonomous Agents

I. INTRODUCTION
A long-envisioned requisite for fully-autonomous robotic

manipulation is to endow robots with the ability to learn
from and improve through experiences. For example, con-
sider a robot on a shelf stacking task (see Figure 1). Such
a robot may frequently come across similar task instances
that result in similar motion plans. Despite the resemblance
among problems, the most common approach is to plan from
scratch; neither prior information nor recurrent computations
are leveraged to aid in solving related queries. This strategy
can lead to unnecessary long planning times. Instead, the
commonalities between instantiations should be considered as
prior knowledge at the planning stage. However, this is not
a trivial problem. The planner must reason over the relevant
features that allow for the generalisation of prior knowledge
even to notably different task instances.

Manuscript received: October 8, 2020; Revised January 14, 2019; Accepted
February 14, 2021. This paper was recommended for publication by Editor
Hong Liu upon evaluation of the Associate Editor and Reviewers’ comments.

This research has been partially supported by the Scottish Informatics and
Computer Science Alliance (SICSA), ORCA Hub EPSRC (EP/R026173/1)
and consortium partners. Work by LEK and CC is supported in part by NSF
1718478 and NSF 2008720, Rice University Funds, and NSF 1842494 (CC).

1Edinburgh Centre for Robotics, University of Edinburgh and Heriot-Watt
University (UK). eric.pairet@ed.ac.uk, y.r.petillot@hw.ac.uk

2Kavraki Lab, Department of Computer Science at Rice University, Hous-
ton TX (USA). chamzas@rice.edu, kavraki@rice.edu

Digital Object Identifier (DOI): see top of this page.

Fig. 1: Our planner can leverage a single path (experience)
computed in a particular task instance, e.g., “fetch the red
object” (left), to efficiently solve novel task instances (right)
that remarkably differ from the experience, e.g., in obstacles
(blue objects), shelf structural geometry and target locations.

Related work. Leveraging prior experiences for build-
ing motion plans efficiently has drawn special attention to
the learning and planning communities. Learning-based ap-
proaches infer the underlying task policy from a given set of
demonstrations, which is then used to retrieve task-related mo-
tion plans (e.g., [1]–[4]). Relevant features are extracted from
the demonstrations such that the learnt policy can generalise
to novel task instances. Although these methods are capable
of computing plans quickly by learning from experience, they
typically generalise poorly to task instances that significantly
differ from those observed a priori [5].

On coping with varying task instances while leveraging ex-
periences, sampling-based planning offers a promising venue
to generalise the a priori knowledge. Such a strategy is known
as experience-based planning. There are mainly two orthog-
onal approaches: (1) biasing the sampling into task-relevant
areas, and (2) exploiting previously computed motions. This
work is, in spirit, closer to the latter: leveraging prior motions.
Related work is discussed for both alternatives.

(1) Biasing the sampling involves guiding the exploration
towards task-relevant regions of the configuration space. A
common approach is to take advantage of geometric features
of the workspace to guide the sampling in the configuration
space (e.g., [6]–[10]). Strategies that bias the sampling can
significantly speed up queries, but they rely on identifying
familiar workspace features to infer relevant samples in the
configuration space. Therefore, their applicability is mainly
limited to task instances that resemble those observed a priori,
leading to a lack of generalisation to new environments.

(2) Using previously computed motions consists of storing
experienced motions in a library (e.g., [11], [12]) or jointly as a
graph (e.g., [13], [14]). These methods recall exact prior expe-

A visual aid about the experience-driven random trees planners can be
found in: https://youtu.be/kD3A3Xs_psI.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

riences to solve the current planning query. In Lightning [11],
the most relevant experience is retrieved based on the start-goal
proximity of a experience and the current query. The nearest
path is chosen to be repaired. The repair step employs the bi-
directional rapidly-exploring random tree (RRTConnect) to re-
connect the end-points of segments originated by variant con-
straints, e.g., obstacles. Differently, Experience Graphs [13]
build a roadmap of experiences to then search it using some
heuristics. In a similar vein, Thunder [14] creates a sparse
roadmap from all experiences, which is repeatedly queried
via A∗ until a valid path is found. If the graph does not
contain a valid path, candidate paths, if any, are considered for
repairing. The repairing invokes RRTConnect to reconnect the
disconnected states along the candidate paths. All these path-
centric approaches exploit prior motion plans in the exact con-
figuration they were experienced, i.e., “rigidly”. This leads to
poor performance when planning in non-experienced regions
of the robot-task space. Therefore, for these methods to work,
the library must contain a prior path that already resembles a
valid motion plan for the current planning problem. Con-
sequently, current experienced-based planners are dependant
on a vast and extremely relevant set of prior experiences to
counteract their lack of generalisation capabilities.

Contribution. In this work, we change the paradigm in
which prior path experiences stored in libraries of motions
are being used. Instead of exploiting prior motions “rigidly”
to preserve the invariant constraints, we use them in a
“decomposable” and “malleable” way to infer the next move
given a particular state of the robot in a task. With this
proposition, we present experience-driven random trees (ERT)
and its bi-directional version ERTConnect, two experience-
based planners capable of generalising a single prior motion
plan across significantly varied task instances. These planners
leverage a path experience by parts to iteratively build a tree
of micro-experiences, i.e., segments that resemble those in
the prior experience. Suitable micro-experiences result from
semi-randomly morphing different parts of the experience.
Such a strategy proves to be useful to efficiently explore the
connectivity of the robot-task space even in non-experienced
regions. Additionally, we discuss how to select the best candi-
date for our planner given a library of path experiences. Such
experience selection strategy enables the use of our planners
in frameworks that incrementally build libraries of experiences
by adding newly computed motion plans (e.g., [11], [14]),
as well as in systems that gather experiences from human
demonstrations (e.g., [15]–[17]).

The key insight of our approach is that prior experiences
are of a better use when leveraged in a “malleable” fashion,
oppositely to the common “rigid” usage of experiences. Thus,
contrary to prior work, the applicability of our planner goes
beyond task instances that closely resemble those observed a
priori. Empirical analysis demonstrates our planner’s ability to
leverage prior experiences efficiently and to generalise them
to distinguishably dissimilar task instances. In these challeng-
ing conditions, while related state-of-the-art experience-based
planners fail to exploit vast repertoires of prior path experi-
ences, our planner, with a single path experience, significantly
outperforms them in both success rate and planning time.

II. PROBLEM DEFINITION AND
APPROACH OVERVIEW

In this manuscript, we are interested in families of motion
planning problems that involve similar task instances and
thus, seek similar motion plans. The commonalities between
instantiations are of interest because they open the possibility
for a robot to leverage prior information about the task.
Enabling the robot to exploit such similarities would allow
it to efficiently solve tasks related to those seen a priori.

Consider a robot with configuration space Q ∈ Rn conduct-
ing a particular task, e.g., shelf stacking (see Figure 1). Let
Qobst ⊂ Q be the region of the configuration space occupied
by obstacles, and Qfree = Q \ Qobst be the collision-free re-
gion. Let q ∈ Q denote a particular robot configuration, and
α ∈ [0, 1] be a phase variable that indicates the progress on
the execution of a collision-free motion plan. Then, the state
of the robot in a motion plan is defined in the configuration-
phase space S = Q× R[0,1] as s = 〈q, α〉 ∈ Rn+1. The valid
regions in the configuration-phase are defined as:

Sfree = {〈q, α〉 ∈ S | q ∈ Qfree}. (1)

Let A be some prior information about the task. In this
work, we consider prior knowledge defined by a library of path
experiences A = {ξD1, ξD2, . . . , ξDj}, where each ξD is a
path (prior experience) solving a particular task instance. Paths
as priors are of particular interest since they can be acquired
over time from the robot’s planning solutions on similar task
instances, or from external sources, such as from a human
kinaesthetically guiding a robot through a task. Note that the
focus of this manuscript is experience-based planning, where a
set of prior path experiences A relevant to the current problem
is assumed to be provided. Therefore, given a library A, and
the start 〈qstart, 0〉 ∈ Sfree and goal 〈qgoal, 1〉 ∈ Sfree states, the
motion planning problem considered in this work seeks a plan-
ning process J : A → ξ capable to leverage A to efficiently
find a collision-free continuous path ξ : α ∈ [0, 1]→ Sfree that
connects ξ(0) = qstart ∈ Sfree to ξ(1) = qgoal ∈ Sfree.

Our approach to take advantage of a library of experiences
J : A → ξ is twofold. First, as discussed in Section IV-A, we
select a path experience ξD ∈ A suitable for the current plan-
ning problem. Then, we exploit the selected prior L : ξD → ξ
via our contribution: the experience-driven random trees plan-
ners ERT and ERTConnect presented in Section III. We
empirically demonstrate that, when using our planner, a unique
prior path suffices to solve other instances of the same task.

III. EXPERIENCE-DRIVEN RANDOM TREES

The ERT and ERTConnect planners are inspired by tree
sampling-based methods [18], [19]. Our planners, however,
iteratively leverage a single task-relevant prior path experience
by parts (segments, a.k.a., micro-experiences) to ease the
capture of connectivity of the space. Such micro-experiences
are semi-randomly morphed to generate task-relevant motions,
i.e., segments that resemble those in the prior (e.g., dotted
lines in Figure 2). The obtained motions are sequentially
concatenated to compose a task-relevant tree (see green tree
in Figure 3). This exploratory strategy aims at finding a trace

PAIRET et al.: PATH PLANNING FOR MANIPULATION USING EXPERIENCE-DRIVEN RANDOM TREES 3

along the tree edges, i.e., a sequence of local modifications on
the prior, that constitutes a continuous path ξ which satisfies
ξ : α ∈ [0, 1]→ Sfree, ξ(0) = qstart and ξ(1) = qgoal.

Noteworthy, our planners are designed to be agnostic to
distance metrics, as capturing proximity between two robot
configurations in a task is not trivial. Moreover, such met-
ric would potentially need to be designed for each task.
Therefore, instead of iteratively growing a tree from the
nearest configuration to a random sample (RRT-like [19]), our
experience-driven random trees iteratively branch-off (expand,
EST-like [18]) by concatenating the inferred motions. Like-
wise, to generate resembling motions, we deform the micro-
experiences such that no similarity metric is needed.

The core routine through which the planner exploits the
prior experience to generate task-relevant micro-experiences
is detailed in Section III-A, and its usage in a uni- and bi-
directional sampling-based planning strategy is presented in
Section III-B and Section III-C, respectively.

A. Inferring Task-relevant Motions from a Single Experience
For planning efficiently, we are particularly interested in

generating motions that are task-relevant in S, i.e., coherent
according to the robot state in a task. To that purpose, our plan-
ners leverage an experience by parts in a “malleable” fashion,
as opposed to the common “rigid” usage, to infer motions that
are likely to be relevant to different task instantiations.

Initially, our planners pre-process the given experience ξD
before exploiting it iteratively. Specifically, ξD is mapped onto
the current planning problem to obtain ξ′D, a path whose initial
and final configurations match the start and goal of the current
planning problem (see Figure 2). The computation of such
mapping ξD → ξ′D is detailed within the description of the
planners. Then, at each iteration, our planners leverage a part
(micro-experience) of the mapped experience ξ′D to infer suit-
able motions for the task. Generally, let ψD : α ∈ [αini, αend]
be a micro-experience from the prior spanning from αini
to αend such that ψD(α) = ξ′D(α) ∀ α ∈ [αini, αend] (e.g., red
segment in Figure 2). We denote the extraction of a micro-
experience from a prior as ψD = ξ′D(αini, αend), and say that
such segment has a phase span |ψDα| ∈ (0, 1].

Extracted micro-experiences are exploited to create task-
relevant motions. Formally, let ν : ψD → ψ ∈ R(n+1)×(n+1)

be a function that morphs a sequence of states onto another re-
gion of S. We formulate the support of this operation to be that
of an affine transformation of the form ψ = AψD +B, where
ψD(n+1)×k = 〈q̄Dn×k, ᾱD1×k〉 is a prior micro-experience
with k states, and ψ(n+1)×k = 〈q̄n×k, ᾱ1×k〉 is the generated
task-relevant segment. Specifically, we design A to be a shear
transform for its shape-preserving properties, and B to be a
translation of the segment into a region of interest. Formally,
then, this affine transformation modulates ψD as:[

q̄
ᾱ

]
=

[
In×n λn×1
01×n |ψDα|

][
q̄D
ρ

]
+

[
bn×1 . . . bn×1
αini . . . αini

]
(n+1)×k
, (2)

where λn×1 is the shearing coefficient, bn×1 is a shifting
vector, and ρ = [0, ..., 1]1×k is a local reparametrisation of
ᾱD. Note that the phase of the generated segment ψ re-
mains ᾱ = ᾱD. Informally, Equation 2 translates and smoothly

Fig. 2: Illustrative example of Equation 2: generation of
resembling motions (dotted lines) by morphing the micro-
experience ψD with semi-random b (shift) and λ (shear) pairs.

deforms the micro-experience by adding up the increasing
amount of noise λρ + b, such that ψ(αini)− ψD(αini) = b
and ψ(αend)− ψD(αend) = λ + b. Therefore, specifying b and
λ enables the generation of new micro-experiences and their
mapping onto any region of interest in S. Figure 2 exemplifies
the affine morphing in Equation 2 with different parameters.
We detail the implementation of Equation 2 in Algorithm 1.

Algorithm 1: MORPH_SEGMENT(ψD, λ, b)
Input:
ψD: micro-experience of phase-span |ψDα| from αini
λ: shearing coefficient
b: shifting vector

Output:
ψ: morphed motion

1 for ρ← 0 to 1 do // Equation 2
2 α = ρ|ψDα|+ αini
3 ψ(α)← ψD(α) + ρλ + b
4 return ψ

We exploit the ability to morph parts of the mapped prior
path experience ξ′D to infer motions that are suitable to either
connect two particular states sinit and starg, or explore the best
way to continue the task from a given state sinit. These two
processes, and their interaction with Algorithm 1, are detailed
in Algorithm 2 and illustrated in Figure 3.

Connect (line 3 to 6): given two task-related configuration-
phase states sinit = 〈qinit, αinit〉 and starg = 〈qtarg, αtarg〉, we hy-
pothesise that a suitable connection may result from mapping
the micro-experience ψD : α ∈ [αinit, αtarg] between sinit and
starg. Thus, after extracting the relevant micro-experience from
ξ′D (line 4), the parameters b and λ of the mapping in Equa-
tion 2 are calculated such that the resulting micro-experience ψ
satisfies ψ(αinit) = qinit and ψ(αtarg) = qtarg (line 5 and 6).

Explore (line 8 to 11): given one task-related configuration-
phase state sinit = 〈qinit, αinit〉, we hypothesise that a suitable
continuation of the task is to apply a micro-experience similar
to that ψD ∈ ξ′D starting at αinit. For that, we first determine
which span of ξ′D to exploit by defining αtarg (line 8). An
appropriate αtarg depends on the direction in which ξ′D is being
exploited; we call it forward when exploiting the prior from
ξ′D(0) to ξ′D(1), and backward otherwise. Correspondingly,

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

(a) ERT: first iteration example (b) ERT: explore example (c) ERT: connect example

Fig. 3: Experience-driven random trees iteratively build a tree (green) of micro-experiences. At each iteration, an existing node
in the tree is randomly selected to either explore the most suitable continuation of the task (e.g., snapshots in (a) and (b)), or
connect to another known state (e.g., the goal state as in (c) (ERT), or a state in the other tree (ERTConnect)). In both cases,
relevant motions (dotted red) are generated by morphing micro-experiences (red) of the prior path experience ξ′D (see Figure 2).

SAMPLE_SEGMENT_END(αinit) defines αtarg as:

αtarg =

{
min(αinit + U(ωmin, ωmax), 1), if forward
max(0, αinit − U(ωmin, ωmax)), if backward

(3)

where U(ωmin, ωmax) draws a sample from a uniform distribu-
tion to determine the phase span of the extracted segment. The
bounds ωmin and ωmax are discussed in Section IV-B. Next,
the corresponding segment ψD : α ∈ [αinit, αtarg] is extracted
from the mapped prior path experience ξ′D (line 9), and b is
computed for the resulting micro-experience ψ to start at sinit,
i.e., to satisfy ψ(αinit) = qinit (line 10). Finally, to generate a
task-relevant motion from qinit, the shearing coefficient λ is
sampled randomly within some bounds to morph the micro-
experience ψD into a similar motion (line 11). In particular,
λ is drawn from a uniform distribution U(−ε|ψDα|, ε|ψDα|)
such that, at each iteration, the maximum allowed deformation
is proportional to the segment’s phase span. This implies that
the accumulated deformation along any possible path ξ found

Algorithm 2: GENERATE_SEGMENT(sinit, starg, ξ′D)
Input:
sinit: required segment configuration-phase start
starg: required (if any) segment configuration-phase end
ξ′D: prior experience

Output:
ψ: generated segment
send: end configuration-phase of the segment ψ

1 〈qinit, αinit〉 = sinit
2 if not starg = ∅ then // connect
3 〈qtarg, αtarg〉 = starg

4 ψD ← ξ′D(αinit, αtarg)
5 b← qinit − ψD(αinit)
6 λ← qtarg − (ψD(αtarg) + b)

7 else // explore
8 αtarg ← SAMPLE_SEGMENT_END(αinit)
9 ψD ← ξ′D(αinit, αtarg)

10 b← qinit − ψD(αinit)
11 λ← U(−ε|ψDα|, ε|ψDα|)
12 ψ ← MORPH_SEGMENT(ψD, λ, b)
13 send ← 〈ψ(αtarg), αtarg〉
14 return 〈ψ, send〉

by our planners does not exceed, with respect to ξ′D, the user-
defined malleability bound ε (see discussion in Section IV-B).

Overall, the method GENERATE_SEGMENT(·) enables the
presented experience-guided random tree planners to leverage
a single path experience at different levels of granularity, and
map task-relevant segments onto any region of interest in the
configuration-phase space. In that way, our planner aims at
composing a valid path from a suitable sequence of morphed
micro-experiences. The remaining of this section discusses the
usage of such routine in our uni-directional (ERT) and a bi-
directional (ERTConnect) tree sampling-based techniques.

B. Uni-directional Experience-driven Random Trees (ERT)

Algorithm 3 provides the pseudo-code of the uni-directional
version of our planner. The algorithm seeks finding a continu-

Algorithm 3: ERT(sstart, sgoal, ξD)
Input:

sstart and sgoal: start and goal configuration-phase
ξD: prior experience

Output:
ξ: collision-free path

/* map ξD onto current problem */
1 〈ξ′D, ∅〉 ← GENERATE_SEGMENT(sstart, sgoal, ξD)
2 if IS_VALID(ξ′D) then
3 return ξ′D

/* sampling-based ξ′D exploitation */
4 T .init(sstart)
5 while not STOPPING_CONDITION() do

/* node selection */
6 sinit ← T .select_node()

/* micro-experience generation */
7 starg ← ∅
8 if ATTEMPT_GOAL() = True then
9 starg ← sgoal

10 〈ψ, starg〉 ← GENERATE_SEGMENT(sinit, starg, ξ′D)

/* tree extension */
11 if EXTEND(T , ψ, sinit, starg) 6= Failed then
12 if GOAL_REACHED(starg) then
13 return PATH(T)

PAIRET et al.: PATH PLANNING FOR MANIPULATION USING EXPERIENCE-DRIVEN RANDOM TREES 5

Algorithm 4: EXTEND(T , ψ, sinit, starg)
Input:
T : tree of previously generated micro-experiences
ψ: new generated micro-experience
sinit and starg: start and end configuration-phase of ψ

Output:
outcome of the tree extension attempt

1 if IS_VALID(ψ) then
2 T .add_vertex(starg)
3 T .add_edge(ψ, sinit, starg)
4 return Advanced

5 return Failed

ous path from a start sstart to a goal sgoal configuration, given a
related path experience ξD. The planner firstly maps the entire
prior experience ν : ξD → ξ′D onto the current planning prob-
lem (line 1); note that the output of GENERATE_SEGMENT(·)
(Algorithm 2) is a segment ψ that spans from αini = 0 to
αend = 1, thus we rename it ξ′D. If ξ′D is not valid (line 2), the
planner proceeds to exploit ξ′D to generate task-relevant micro-
experiences. The planner follows a three-step procedure (node
selection, segment sampling, and tree extension) until the stop-
ping condition is met (line 5). A node sinit is selected from the
tree T with probability P (node) = 1

w(node)+1 (line 6), where
w(·) is a weighting function that penalises the selection of a
node according to the number of times that it has already been
selected. This weighted sampling strategy seeks a uniform
selection of all nodes over time, thus promoting a first depth
exploration of the task phase α. From the selected node sinit,
the tree is expanded using segments that resemble those in
the prior experience ξ′D. With probability p, the expansion
of the tree attempts to connect sinit with sgoal, whereas with
probability (1 − p) an explore expansion is done towards a
semi-random configuration starg (line 7 to 10). Algorithm 2,
previously explained in Section III-A, details the extraction
of suitable segments under these two different cases. The ex-
tracted segment is used to attempt expanding the tree (line 11)
following Algorithm 4. If the segment is valid, it is integrated
into the tree. Note that, as discussed in Section III-A, the
appended segment is a motion whose shape resembles that
of the related micro-experiences in the prior experience, not
a straight line. Finally, if the incorporated (valid) segment
reaches the goal, the path is returned (line 12 and 13).

C. Bi-directional ERT (ERTConnect)

The principles of leveraging from a prior experience by
generation of task-relevant micro-experiences can also be em-
ployed in a bi-directional fashion. The proposed bi-directional
planning scheme resembles, in spirit, that of the RRTCon-
nect [19], i.e., to simultaneously grow two trees, one from the
start configuration and the other from the goal configuration,
aiming to find a solution by connecting both trees. ERTCon-
nect, however, includes the peculiarities of our experience-
based planning approach. As shown in Algorithm 5, the
planner firstly maps the prior path experience ν : ξD → ξ′D
onto the current planning problem (line 1). If ξ′D is not valid

Algorithm 5: ERTConnect(sstart, sgoal, ξD)
Input:

sstart and sgoal: start and goal configuration-phase
ξD: prior experience

Output:
ξ: collision-free path

/* map ξD onto current problem */
1 〈ξ′D, ∅〉 ← GENERATE_SEGMENT(sstart, sgoal, ξD)
2 if IS_VALID(ξ′D) then
3 return ξ′D

/* sampling-based ξ′D exploitation */
4 Ta.init(sstart)
5 Tb.init(sgoal)
6 while not STOPPING_CONDITION() do

/* node selection */
7 sinit ← Ta.select_node()

/* micro-experience generation */
8 〈ψ, starg〉 ← GENERATE_SEGMENT(sinit, ∅, ξ′D)

/* tree extension */
9 if EXTEND(Ta, ψ, sinit, starg) 6= Failed then

10 if OTHER_EXTREME_REACHED(starg) then
11 return PATH(Ta)

/* micro-experience generation */
12 snear ← Tb.nearest_neighbour(starg)
13 〈ψ, starg〉 ← GENERATE_SEGMENT(snear, starg, ξ′D)

/* tree connection */
14 if EXTEND(Tb, ψ, snear, starg) 6= Failed then
15 return PATH(Ta, Tb)

16 SWAP(Ta, Tb)

(line 2), the planner proceeds to exploit ξ′D to compute a
solution. The planner simultaneously grows two trees, one
rooted at sstart and the other at sgoal (line 4 and 5). At each
iteration, until the stopping criterion is met (line 6), a node of
the active tree Ta is selected via weighted selection (line 7) to
explore the space via a task-relevant micro-experience (line 8).
If the active tree is extended successfully with the generated
segment (line 9), we first check whether the end of the motion
has reached the other extreme (line 10). This implies that a
path has been found before the trees connected, either by Ta
reaching the root of Tb or the other way around, in which
case the path is returned as a solution (line 11). Otherwise,
the node of Tb nearest to starg is selected (line 12) to attempt
to connect both trees with a task-relevant segment (line 13).
For such nearest neighbour query, we consider the Euclidean
distance between the configuration components (without the
phase). If the extension is successful, the corresponding path
is returned (line 14 and 15).

IV. USING ERT AND ERTCONNECT

In this section we discuss some details on using the pro-
posed experience-driven random trees planners.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

A. Selecting a Prior from a Library of Experiences
A robot might have at its disposal a library A of task-

relevant path experiences. As our planners exploit a unique
prior path experience ξD to solve other instances of the same
task, our current selection criteria ξD ∈ A is to pick the prior
that resembles the current planning query the most. Intuitively,
if a solution to the current planning problem lies in the
neighbourhood of a prior experience, the invariant robotic
constraints encoded in the experience itself, such as self-
collisions and joint limits, are more likely to prevail and thus,
ease the planner’s computations. Inspired by the experience
selection in [11], we estimate such resemblance by ranking
the experiences for their similarity to the start and goal of the
planning query. This is, the prior experience ξD selected to
feed the proposed experience-based planner is such that:

ξD = arg min
ξDi∈A

dist(ξDi(0), qstart) + dist(ξDi(1), qgoal), (4)

where qstart and qgoal are the start and goal configurations of
the current planning problem, and dist(·) is a function that
estimates the Euclidean distance between configurations in Q.

We verified the approach to select a unique prior from a
library of experiences described in Equation 4 experimentally;
despite it led to good results, the topic merits further attention.

B. Planner’s Parameterisation
Next, we review the parameters of the presented planners:
• p - probability of attempting to connect the tree to the

goal (only in ERT). This parameter should be set small
to allow the planner explore the space. Default: p = 0.05.

• ωmin and ωmax - lower and upper phase span bounds of the
extracted segments. Indirectly, these parameters delimit
the length of the motions added in the tree to explore the
space. Default: ωmin = 0.05 and ωmax = 0.1.

• ε - malleability bound to delimit the amount of mor-
phing applied to the micro-experiences. Intuitively, this
parameter defines a volume (tube) around ξ′D where the
planner can explore for a solution. Default: ε = 51×n
(large enough to cover the entire robot’s kinematic range).

Our planners’ default parameters are non-optimised for
a particular planning problem, but left generic to succeed
in many scenarios provided a relevant path experience. The
planners’ behaviour can be adjusted by tuning, namely, ωmin,
ωmax and ε. As our planner discards motions that are not
entirely valid, large phase spans might endanger the ability
to build a tree. However, in scenarios with few obstacles, ωmin
and ωmax can be set large to speed up planning computations.
Also, lowering ε can speed up computations, as the tree growth
would be more guided around the mapped experience ξ′D. The
lower ε, the more dependant the planner is on the suitability
of the provided experience as the probabilistic completeness
is compromised. Knowing the level of dissimilarity between
the experience and the current problem might aid in tuning ε
to trade growth guidance and space exploration.

V. EXPERIMENTAL EVALUATION
The proposed experience-guided random trees have

been implemented in the Open Motion Planning Library

(OMPL) [20] and evaluated on the Fetch robot [21] in a
shelf-stocking task. Fetch is a humanoid robot with a 7-DoF
arm attached on a sliding torso, thus requiring to plan in
an 8-DoF configuration space. Our experiments are designed
to measure the generalisation capabilities of our planner in
scenarios that involve different levels of dissimilarity between
prior experiences and task instances (see Section V-A). The
considered task instances include synthetic and real-world
scenarios (see Section V-B).

A. Experimental Setup

Our experimental setup considers a varied instance set of the
challenging problem of reaching a target object in a shelving
unit, specifically in a synthetic 4-tier (see Figure 4) and a
narrower real 5-tier shelving unit (see Figure 5). Task instances
in these scenarios not only present variability on the location
of the shelving unit (±90◦ around the robot) and the robot’s
initial position (±10cm), but also on the location of the target
object and the obstacles within the shelving unit.

To further evaluate the generalisation capabilities of the
proposed experience-based planner, we introduce some addi-
tional variability across the experimental setup. This is, we
compute with RRTConnect a total of 100 experiences from
different task instances; them all at the synthetic shelving
unit, with target objects in the middle shelf and no obstacles.
These scenarios are discarded for the rest of the evaluation.
Then, these experiences are used to evaluate the planner in
four scenario sets that involve increasing dissimilarity levels
between experiences and planning queries:
• Set 1: 200 instances with target objects in the middle shelf

without obstacles (synthetic). Note that these instances
resemble those used to compute experiences.

• Set 2: 200 instances with target objects in the middle shelf
with the presence of obstacles (synthetic).

• Set 3: 200 instances with target objects in three different
shelves with the presence of obstacles (synthetic).

• Set 4: 120 instances with target objects and obstacles in
the middle shelf (real-world).

The four sets of task instances are used to benchmark our bi-
directional ERTConnect planner against RRTConnect [19] and
the most representative experience-based planners that employ
motions as prior information of the task, i.e., Thunder [14]
and Lightning [11]. Note that these two frameworks are
double-threaded with a bi-directional ‘retrieve and repair’ (RR)
and ‘plan from scratch’ (PFS) module. Similarly, for a fair
comparison, we embed our ERTConnect in a double-threaded
framework which runs RRTConnect in parallel to PFS. The
reported results indicate the contribution of the RR (plain bar)
and PFS (stripped bar) modules in solving the planning queries
separately, and the required planning time jointly (plain bar).

In this work’s context, where we consider novel tasks
instances in varied scenarios, optimising each planner’s param-
eters across queries is not possible. Optimal parametrisation
requires extensive testing in each scenario set, and thus know-
ing the scenarios in advance, among other planning aspects.
Therefore, all planners are used in their default OMPL set-
tings, and ours is set to the non-optimised default parameters

PAIRET et al.: PATH PLANNING FOR MANIPULATION USING EXPERIENCE-DRIVEN RANDOM TREES 7

Fig. 4: Success rate and solving time results for the benchmark on synthetic scenarios, where the Fetch Robot needs to reach
a target object in the shelving unit subject to multiple variations of the task instances. From left to middle-right column, case
studies from less to more experience-instance dissimilarity: Set 1, Set 2 and Set 3. The picture on the right depicts a particular
instance of Set 3 which, differently from the considered prior experiences, involves target objects (red cylinders) located at
any of the three shelves, a different relative location of the shelving unit, as well as obstacles (blue cylinders).

specified in Section IV-B. The benchmark is run on an Intel i7
Linux machine with 4 3.6GHz cores and 16GB of RAM. The
performance of the three experience-based planners in each
instance set is assessed under libraries with {1, 5, 50, 100}
prior experiences. The experiences provided to each planner
are the same. Each query is repeated 50 times with a planning
timeout of 20 seconds. All in all, the conducted benchmark
involves a total of 468,000 planning queries.

B. Results on Synthetic and Real-world Scenarios

The results of the benchmark on Set 1, Set 2 and Set 3 are
summarised in Figure 4, whilst those in the real-world Set 4
are depicted in Figure 5. As it can be observed, provided a high
number of experiences that are close to the current planning
problem (i.e., Set 1 with the library of 100 experiences), all
planners achieve a high success rate with solving time of the
order of milliseconds. This behaviour is expected as, given
the experience-query similarity and the library size, it is likely
that there exists a prior experience that nearly resembles the
current query, thus involving minimum repairing.

As the dissimilarity between experiences and queries in-
creases, experience-based planners need to generalise the prior
information more broadly to succeed. Intuitively, the need
of generalisation arises when a reduced number of demon-
strations in the library needs to cover varied task instances
(x-axis within each experimental set), or when the current
planning requirements differ significantly from the set of
available experiences (variability across experimental sets).
The outcome of our benchmark points out that the performance
of Thunder’s RR module drops abruptly by either dissimilarity
factor, whereas the Lighting’s RR is not as affected by the
lack of experiences as it is when dealing with significantly
different task instances. The poor generalisation of these
frameworks across instances is due to the rigid usage of prior
experiences. Our approach, instead, by leveraging experiences

in a malleable way, achieves a success rate and solving time
that significantly improves that of Lightning and Thunder.

The importance of generalising prior information is partic-
ularly noticeable in the real-world task instances in Set 4,
where the queries differ from the experiences not only on
the location of the shelving unit and the target object, but
also on the narrower geometry of the whole shelving unit,
the height of the shelf where the target object is located at,
and the presence of obstacles. Under these challenging task
variations and when accounting with only one demonstration,
our approach outperforms by a factor of approximately 3.7

Fig. 5: Success rate and solving time results for the bench-
mark on real-world scenarios (Set 4), where the Fetch Robot
needs to reach a target object by generalising prior ex-
periences to a narrower shelving unit geometry, to differ-
ent locations of the shelving unit, robot’s initial position
and target object, as well as to the presence of obstacles.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

and 37.1 times the RR module of the Lightning and Thun-
der frameworks, respectively. Similarly, those frameworks
are respectively outperformed by our approach by a factor
of 4.7 and 8.9 times when considering 100 experiences.
Notably, while these planners time out most of the trials,
our method required only a quarter (with one demonstra-
tion) and less than an eight (with multiple demonstrations)
of the planning time budget to find a solution.

The ability to generalise prior information not only limits
the level of experience-query dissimilarity that a planner can
cope with, but also the number of experiences that are required
to achieve high performance. As an example, providing 50
experiences to Thunder’s RR, 5 to Lightning’s RR and 1
to our ERTConnect leads to approximately the same success
rate of 80% in Set 1. Achieving such a performance in the
other experimental sets with Lightning and Thunder is not
possible even with a library of 100 experiences, whereas
our approach surpasses such performance when selecting a
unique experience from a library of only 5 experiences. This
implies that our ERTConnect planner, by generalising prior
experiences more efficiently, significantly outperforms current
experienced-based planners using libraries of motions in the
literature even when provided with notably fewer experiences.

VI. DISCUSSION
In this manuscript, we have presented two new experience-

based planners: the uni-directional experience-driven random
tress (ERT) and the bi-directional ERT (ERTConenct). These
two methods are tree sampling-based planners that iteratively
exploit a single prior path experience to ease the capture of
connectivity of the space. At each iteration, a segment of the
prior is extracted and semi-randomly morphed to generate a
task-relevant motion. The obtained motions are sequentially
concatenated to compose a task-relevant tree, such that a trace
along the edges constitutes a solution to a given task-related
planning problem. Thorough experimentation against current
experienced-based planners using libraries of motions in the
literature [11], [14] demonstrates our planner’s significant
superior performance in a wide range of task instances.

We have shown that, similarly to related work [11], [14], our
planner can be used in parallel with a planning from scratch
strategy to guarantee probabilistic completeness. Therefore,
when multi-threading is an option, a planning from scratch
thread should be considered, as well as multiple instantia-
tions of our planner with a set of varied experiences that
maximises space coverage. In the future, we plan to explore
the convenience of different transformation supports to infer
relevant micro-experiences subject to intrinsic task and robot
constraints; for instance, early tests demonstrate our planners’
suitability to leverage experiences in SO(3) using quaternions.
Another promising line for future work is the extension of
our planner to leverage multiple experiences simultaneously,
such that the local exploration is conducted with the most
suitable segment in the library. Likewise, such a strategy
would potentially allow the planner adapting to changes in
the planning context, e.g., dynamic obstacles and moving goal
configurations, as well as solving novel tasks by combining
experiences of multiple different tasks.

ACKNOWLEDGMENTS
The authors thank Zachary Kingston for his support in in-

tegrating our planner into MoveIt, and Carlos Quintero for his
help on the final experiments. Also, the authors are grateful
to Paola Ardón for valuable discussions and suggestions.

REFERENCES

[1] F. Meier, D. Kappler, and S. Schaal, “Online learning of a memory for
learning rates,” in 2018 IEEE International Conference on Robotics and
Automation, pp. 2425–2432, IEEE, 2018.

[2] È. Pairet, P. Ardón, M. Mistry, and Y. Petillot, “Learning generalizable
coupling terms for obstacle avoidance via low-dimensional geometric
descriptors,” IEEE Robotics and Automation Letters, vol. 4, no. 4,
pp. 3979–3986, 2019.

[3] S. Stark, J. Peters, and E. Rueckert, “Experience reuse with probabilistic
movement primitives,” in IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pp. 1210–1217, IEEE, 2019.

[4] È. Pairet, P. Ardón, M. Mistry, and Y. Petillot, “Learning and compos-
ing primitive skills for dual-arm manipulation,” in Annual Conference
Towards Autonomous Robotic Systems, pp. 65–77, Springer, 2019.

[5] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 3, 2020.

[6] M. Zucker, J. Kuffner, and J. A. Bagnell, “Adaptive workspace biasing
for sampling-based planners,” in 2008 IEEE International Conference
on Robotics and Automation, pp. 3757–3762, IEEE, 2008.

[7] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in 2018 IEEE International Conference on
Robotics and Automation, pp. 7087–7094, IEEE, 2018.

[8] P. Lehner and A. Albu-Schäffer, “The repetition roadmap for repetitive
constrained motion planning,” IEEE Robotics and Automation Letters,
vol. 3, no. 4, pp. 3884–3891, 2018.

[9] C. Chamzas, A. Shrivastava, and L. E. Kavraki, “Using local experiences
for global motion planning,” in 2019 International Conference on
Robotics and Automation, pp. 8606–8612, IEEE, 2019.

[10] D. Molina, K. Kumar, and S. Srivastava, “Learn and link: learning
critical regions for efficient planning,” in IEEE International Conference
on Robotics and Automation, 2020.

[11] D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning
framework that learns from experience,” in 2012 IEEE International
Conference on Robotics and Automation, pp. 3671–3678, IEEE, 2012.

[12] N. Jetchev and M. Toussaint, “Fast motion planning from experi-
ence: trajectory prediction for speeding up movement generation,”
Autonomous Robots, vol. 34, no. 1-2, pp. 111–127, 2013.

[13] M. Phillips, B. J. Cohen, S. Chitta, and M. Likhachev, “E-graphs:
bootstrapping planning with experience graphs.,” in Robotics: Science
and Systems, 2012.

[14] D. Coleman, I. A. Şucan, M. Moll, K. Okada, and N. Correll,
“Experience-based planning with sparse roadmap spanners,” in 2015
IEEE International Conference on Robotics and Automation, pp. 900–
905, IEEE, 2015.

[15] Y. Wang, K. Harada, and W. Wan, “Motion planning through demonstra-
tion to deal with complex motions in assembly process,” in 2019 IEEE-
RAS 19th International Conference on Humanoid Robots, pp. 544–550,
IEEE, 2019.

[16] J. DelPreto, J. I. Lipton, L. Sanneman, A. J. Fay, C. Fourie, C. Choi,
and D. Rus, “Helping robots learn: a human-robot master-apprentice
model using demonstrations via virtual reality teleoperation,” in IEEE
International Conference on Robotics and Automation, 2020.

[17] P. Ardón, È. Pairet, Y. Petillot, R. P. Petrick, S. Ramamoorthy, and
K. S. Lohan, “Self-assessment of grasp affordance transfer,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, IEEE, 2020.

[18] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in Proceedings of International Conference on
Robotics and Automation, vol. 3, pp. 2719–2726, IEEE, 1997.

[19] J. J. Kuffner and S. M. LaValle, “RRT-connect: an efficient approach
to single-query path planning,” in 2000 International Conference on
Robotics and Automation, vol. 2, pp. 995–1001, IEEE, 2000.

[20] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, pp. 72–82,
December 2012.

[21] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich, “Fetch and
Freight: standard platforms for service robot applications,” in Workshop
on autonomous mobile service robots, 2016.

