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Abstract
Robotics opens the possibility for safer operations in remote
and hazardous environments, with multiple robots deployed
to perform tasks that would otherwise present risks for hu-
man operators. However, these missions must be carefully
planned and monitored to ensure their successful completion
while keeping human supervisors in the loop for accountabil-
ity. While many tools have been developed to tackle individ-
ual aspects of such processes, there are few systems combin-
ing plan development, review, and supervision in one frame-
work. This paper proposes a mission planning framework de-
signed for remote operations and integrating the following
features: a user-friendly problem editor, a task-allocation al-
gorithm, visual plan inspection, digital-twin progression re-
ports, and plan deviation analysis. We show how this system
is designed to support non-technical users with planning ac-
tivities. In particular, the system provides continuous feed-
back on plan performance, comparing predictions with real
implementations, enabling users to improve the requirements
for future missions and correct modelling assumptions.

Motivation and Introduction
Robotic platforms provide the potential for safer operating
solutions in remote and dangerous environments that would
otherwise put human workers at risk (e.g., search and rescue
in disaster zones or maintenance of offshore energy plat-
forms). The development of such solutions typically faces
two constraints. First, the uncertainty associated with haz-
ardous environments often limits the practicality of deploy-
ing fully autonomous systems, e.g., cluttered and unstruc-
tured legacy installations, rapid weather changes, etc. As
such, for safety and accountability reasons, the oversight of
a human supervisor becomes necessary. Second, the remote
settings for such missions often necessitate a variety of ad-
vanced robotic capabilities that must be highly coordinated
to accomplish complex tasks, e.g., inspection and manipula-
tion capabilities in ground, aerial, and subsea domains. As
a result, robots are not only expected to coordinate and col-
laborate with each other, but must also be robust enough to
support long-term autonomous operations where direct hu-
man interventions are impractical.

This paper proposes a mission planning framework de-
signed for remote operation that integrates the following fea-

*The first two authors have equal contribution.

tures: (i) user interfaces to facilitate the development and
monitoring of remote missions by human supervisors, and
(ii) robust AI planning solutions for heterogeneous multi-
robot systems that implement intelligent behaviour in dy-
namic environments. The benefits of this framework are
two-fold: it provides an intuitive end-to-end mission plan-
ning and execution system with human end users in mind,
and accommodates the capture of offline and online perfor-
mance data to enable planning experts to enhance model ac-
curacy, system adaptability, and plan optimisation.

Our contribution is a symbiotic framework (see Figure 1)
between mission specification, mission planning, and mis-
sion monitoring, each aiding the others and leading to a
more user-friendly approach for remote planning. None of
the individual modules, nor a trivial integration of them all,
provides the same functionality. Our work presents newly
developed features: (i) the design and development of the
Problem Editor interface, fully linked with high-level plan-
ning; (ii) the extension of the planner to support offline and
online mission planning in favour of enhanced accuracy and
on-the-fly plan re-definition; and (iii) the introduction of a
Plan Deviation Analysis which supports long-term missions
and unexpected changes in the environment. Overall, the
proposed framework enables non-expert users to plan mis-
sions in complex environments, which, as we believe, consti-
tutes a robust system of interest to the planning community.

The rest of this paper is organised as follows. We first sur-
vey previous work related to the development of end-to-end
planning frameworks. We then give an overview of the sys-
tem before expanding on its five major components in detail.
We finally conclude with remarks on future development.

Related Work
We begin by reviewing the literature regarding systems that
address the problem of planning with human oversight and
robust autonomous execution. This survey first considers
human-in-the-loop systems, then focuses on planning tech-
niques. We then present how these components have been
integrated into several ambitious projects over recent years.

Keeping humans involved in automated processes has
been recognised as a beneficial approach for optimisation
(Scott, Lesh, and Klau 2002), notably for the ability to use
up-to-date local knowledge to complement automated mod-
els (Fraternali et al. 2012).



Figure 1: Overview of our planning framework. The approach is designed around 3 user tasks: mission development, plan
review, and execution supervision. We integrate 5 components in the framework: problem definition, high-level task planning,
visual plan inspection, remote mission monitoring, and plan deviation analysis.

With regard to planning systems, there have been many
systems developed to assist in the generation of plans. The
most common approach has been the implementation of
graphical editing tools for domains and problems using
node-link diagrams (Hatzi et al. 2010; Vodrázka and Chrpa
2010). Vrakas and Vlahavas (2003) also include an inter-
face assisting users in defining problems for predefined do-
mains. These techniques have been widely applied within
larger planning systems such as EUROPA (Barreiro et al.
2012), GIPO (McCluskey and Simpson 2006), ModPlan
(Edelkamp and Mehler 2005), and itSIMPLE (Vaquero et al.
2007). It is also common to provide users with a graphical
depiction of generated plans for review. For example, (Kim
and Blythe 2003) reuse the node-link diagram representa-
tion to describe and provide explanations for plan actions
and their components. The PlanCurves technique visualises
plans and enables the exploration of interactions between
multiple robots (Le Bras et al. 2020).

It is also crucial for users to monitor the progress of
plan execution, to check the completion of tasks against the
schedule, and provide commands to rectify exceptions. For
example, (Bernardini et al. 2020) propose to integrate both
planning and monitoring interfaces in their onshore control
centre. Relevant work in the area of Explainable AI Planning
(XAIP) proposes a framework that utilises the existing plan-
ners to assist in answering contrastive questions (Cashmore
et al. 2019) showing effectiveness explaining plan solutions
for safety-critical domains. To optimise context awareness,
such monitoring interfaces must portray agents executing
plans within the environment, for example by overlaying
their positions on a map (Cummings et al. 2019). The in-
tricacies of offshore installations, however, require the sys-
tem to render a more accurate depiction of the environment.
The ORCA Digital Twin system is an example of a detailed
monitoring interface, allowing users to navigate through a
3D simulation while robots are shown to be executing mis-
sions (Pairet et al. 2019).

AI temporal planners such as OPTIC (Benton, Coles,
and Coles 2012) and POPF (Coles et al. 2010) often lack
high-quality task distribution in the generated plans, when
planning for multiple robots (Carreno, Petillot, and Petrick
2019). This is the result of their search strategies which

focus on satisfying propositional action preconditions first
and then action scheduling. Hence, further work has been
done to find solutions that improve performance: (Bernar-
dini et al. 2017, 2020), for example, use the POPF-TIF sys-
tem (Piacentini et al. 2015). This general-purpose planning
technology supports required concurrency, metric variables,
predictable exogenous events and external advisors. How-
ever, this approach does not focus on the optimisation of
task allocation for heterogeneous multi-robot systems. The
MRGA+TP approach (Carreno et al. 2020) instead favours
reasoning about the task allocation problem using the OP-
TIC planner which enables the introduction of preferences
in the planning problem. In this work, we explore the poten-
tial of combining task allocation and AI temporal solvers.

In the past decade, AI planning techniques have been
combined in human-in-the-loop systems to achieve solutions
to challenging robotic problems. Examples of such projects
include JAMES (Foster et al. 2012), SWARMs (Real-Arce
et al. 2016), ORCA (Hastie et al. 2019), and MIMRee,
(Bernardini et al. 2020), among others. The JAMES project
used AI planning for socially-appropriate interaction using
a single robot. Our main target is multi-robot systems. More
closely related to our work are the SWARMs and MIMRee
projects. The first, focused on coordinating cooperative be-
haviours in multi-vehicle (underwater) missions. SWARMs
explores the areas of task allocation and scheduling, pre-
senting solutions that include genetic algorithms and tem-
poral planning. MIMRee uses AI agent technology to coor-
dinate heterogeneous robotic assets while cooperating with
onshore human operators who supervise the mission at a dis-
tance, via the use of shared deliberation techniques. While
we also consider such goals in our work, our approach dif-
fers in a number of significant ways and can be applied to
a wider range of applications in extreme environments: our
approach is not domain-specific, it incorporates a plan de-
viation analyser to achieve robustness while executing mis-
sions, and we provide a tool to acquire data associated with
planning and execution performance to enhance model accu-
racy, system adaptability, and plan optimisation over time.
Our work is being developed in the context of the ORCA
project, which considers similar deployment environments
to MIMRee, including offshore energy applications.



System Overview
The application domain motivating our work centres around
the automation of inspection and basic maintenance tasks
on offshore energy installations, including legacy carbon de-
commissioning and maintenance of renewable resources. In
these remote and hazardous environments, the implemen-
tation of robotic systems provides safer conditions for the
completion of missions.

As such, we designed our framework for remote planning
around three major stages of robot deployment:

1. Development of the mission specifications, defining
goals and available resources to edit problem definitions
and generate plans;

2. Review of the proposed plan, ensuring its safety and ad-
equacy with the user’s up-to-date knowledge and propos-
ing updates to the problem if needed; and

3. Supervision of plan execution, assessing plan deviation
and guarantees concerning mission success.
Five components1 are integrated to help users fulfil these

tasks (see Figure 1). First, we developed a graphical prob-
lem editor, allowing users to edit goals and preferences and
to select the robots to use for missions based on a model
of the domain. We use a high-level task planning system
to allocate the appropriate robots to goals and generate the
mission plan. The plan is then presented using a visual plan
inspector, enabling users to visually inspect the plan, query
details of it if necessary, and approve its execution. Users can
then follow the mission progress on a remote mission mon-
itoring interface, tracking the robots’ movement within the
environment in detail. Simultaneously, the plan deviation
analysis reasons about changes between the scheduled tasks
and the robots’ progress in real-time, querying the planner
for adjustments when needed. We present these components
in more detail in the following sections, detailing their inner
structure and how they communicate with one another.

Problem Definition
The task of defining the problem is the starting point for any
mission. Our framework distinguishes between two problem
statements: system predicates, which do not change from
one mission to the other (e.g., the distance between way-
points), and user predicates, that users may update for spe-
cific missions (e.g., robot starting points). To support both
types of statements, our system first uses a domain model
that defines the system predicates and the structure of user
predicates. A problem editor interface then uses these struc-
tures to assist users in defining their statements.

Domain Model: We model three aspects of the domain: the
environment (including waypoints, a neighbourhood graph,
and objects), the robots (with their capabilities and fluents,
e.g., speed or battery level), and finally the structures for
goals and preferences. Figure 2 presents examples from our
model. While some aspects of the model are domain-specific

1In https://github.com/plebras/PlanVisualisationLive we
present the framework’s components linked to the Development
and Review stages.

Environment Model:

waypoints:

{name:wpg0, coordinates:[22,14,0],

neighbors:[wpg2], type:ground}, ...

objects:

{type:valve, position:wpg35}, ...

Robots Model:

{name:robot0, type:ground, *position:wpg0, *energy:100,

*available:true, recharge_points:[wgp0], speed:0.5,

capabilities:[can_turn_valve,...], ...}, ...

Goals and Preferences Model:

goal types:

{name:valve_inspected, parameters:[valve]},
{name:image_captured, parameters:[waypoint]}, ...

preferences types:

{name:within, goals:[number,predicate]}, ...

preferences predicates:

{name:at, type:state, parameters:[robot,waypoint]},
{name:energy, type:function, parameters:[robot]}, ...

Figure 2: Excerpts from the JSON Domain Model. The en-
vironment model defines waypoints and objects. The robot
model describes features and capabilities; fields with an *
can be edited on the problem editor. The goals and prefer-
ences model describes their structures, and allows the editor
to assist users when defining such statements (see Figure 3).

(e.g., environment data), the system architecture offers scal-
ability to augment the domain in future development or en-
sure reusability across different domains. The modularity of
this architecture, therefore, allows our work to be deployed
onto any platform (real or simulated) and supports different
domains to cope with new operational characteristics. In this
paper, we present a domain and problems well-aligned with
real-world applications, provided by ORCA-Hub’s indus-
trial partners. These components have been improved over
time considering industrial experiences and necessities. We
have used this system architecture to solve problems at dif-
ferent scales, increasing the number of robots and permuting
their capabilities.

Problem Editor: We base our problem editor interface on
Vrakas and Vlahavas’s work (2003), assisting the user in
creating three types of statements split in three lists (see Fig-
ure 3). The first one determines the set of available robots for
the mission (Figure 3B). The user can select which robots to
include in the plan and define their starting point and initial
charge. The second is the list of goals for the mission (Fig-
ure 3C). While initially empty, the editor will use the do-
main model data to create an interactive form for the user to
add goals. Similarly, the user can add constraint preferences
to the third list (Figure 3D), providing decisive support for
querying a plan with specific characteristics, such as main-
taining a minimum charge level or pushing a robot towards
a particular path, notably after having reviewed a previous
plan that did not meet the user’s expectations. Upon sending
the user predicates to the back-end for planning, the domain
model saves these statements in case the user decides a dif-
ferent plan is needed.
Once instructed to generate a plan via the problem editor in-



Figure 3: The problem editor interface. The control panel (A) allows users to load a domain and trigger planning and execution.
The editor displays 3 lists: robots (B), goals (C), and preferences (D). For the latter two, the interface guides users into adding
elements using the domain model data (top of lists); the properties already added are also visible to the user (bottom of the list).

terface, the system performs two actions. First, it saves the
user-defined statements for future potential replanning. Sec-
ond, it compiles the domain model and user-defined state-
ments into a set of problem files, from which the high-level
task planning processes can proceed.

High-Level Task Planning
The high-level task planning architecture is responsible for
task allocation and task planning, taking into account all
available information about system properties (e.g., domain
models, physics, etc.) and mission specifications (e.g., goals,
constraints, etc.). The system uses a Task Assignment (TA)
component to allocate tasks to a set of robots and a Central
Temporal Planner (CTP) to generate a plan solution. Here,
we describe the key characteristics of these two elements.

Task Assignment: The task assignment component in our
strategy is based on the MRGA approach (Carreno et al.
2020). TA is responsible for allocating mission goals to a
fleet of multiple heterogeneous robots before planning. This
method considers two cost functions to allocate goals: (i)
the number of solvable tasks based on the robot capabili-
ties, and (ii) the linear combination of the task makespan,
the distance between the points of interest (POIs) and re-
dundancy of the robot’s sensory system. TA aims to op-
timise the distribution of robots in the environment to re-
duce mission time and avoid worst-case scenarios where all
goals are allocated to a single robot. However, robots can im-
plement tasks in different parts of the environment by con-
sidering goal capability requirements and robot capabilities
(e.g., the ability to inspect a region, manipulate a valve, etc.).
We claim this method improves plan solutions presented by
benchmark temporal planners. The approach is planner ag-
nostic, with the output of TA described in standard Plan-
ning Domain Definition Language with temporal constraints
PDDL2.1 (Fox and Long 2003). The high-level task plan-
ning approach has been evaluated using a large number of
temporal solvers (Carreno et al. 2020) supported by PDDL.

Current system evaluations have not considered other plan-
ning languages such as RDDL (Sanner 2011). Task alloca-
tion distributes tasks by analysing robot and mission charac-
teristics. The approach first evaluates the capabilities of each
robot and the capabilities required to implement each goal
to allocate the set of solvable tasks to appropriate robots. It
then works to define regions where the goals are allocated
using clustering methods. The number of designated regions
is always equal to the number of robots available. Robots are
distributed in the regions by considering the number of tasks
they can implement in each cluster and the distance that sep-
arates them from the closest goal in each cluster. At the end
of this process, each robot will have a goal allocated. The
distribution of robots in the environment leads to the remain-
ing tasks being allocated by considering task makespan, the
distance between the robots and tasks, and the redundancy
of the sensory system to execute critical tasks. Note that the
robots are not tied to a single region; they can freely move if
required to complete mission tasks.

The final (allocated tasks) set is then transformed into a
set of PDDL instances of the fluent (robot can act ?r -
robot ?wp - poi) which is defined in our domain. The
PDDL domain constraints the implementation of the differ-
ent actions in the environment to the appropriate robots that
can work at different POIs. The decision of who is capable of
executing a particular task depends on the TA reasoning. The
set of instances of the fluent is added to the PDDL problem
file with all other system specifications and therefore they
are considered to generate the plan. Figure 4 (top) shows a
set of instances generated by the TA which constraints the
execution of tasks in different POIs to the robots that can
act in these locations. We use this representation to gener-
ate plans using the benchmark planners. In this case, the
introduction of the TA means the AI temporal solver does
not deal with the task allocation problem directly, which re-
duces the planning times and improves the final plan solu-
tion. However, the flexibility of this system allows the user
to decide over the task allocation if that is desirable. In this



Problem Instances:

(robot_can_act husky1 wpg52)

(robot_can_act husky0 wpg31)

(robot_can_act uav0 wpa35)

(robot_can_act husky1 wpg35)

(...)

Temporal Plan Solution:

Time: (Action Name) [Duration]

0.000: (navigation husky1 wpg1 wpg52) [166.348]

0.000: (navigation husky0 wpg0 wpg31) [115.181]

0.000: (navigation uav0 wpa0 wpa35) [111.496]

115.182: (valveInsp husky0 camera_h0 wpg31) [50.000]

166.349: (checkP husky1 p_analyser1 wpg52) [20.000]

186.350: (navigation husky1 wpg52 wpg35) [81.687]

268.038: (valveInsp husky1 camera_h1 wpg35) [50.000]

318.039: (manValve husky1 uav0 wpg35 wpa35) [30.000]

(...)

Figure 4: A fragment of the set of PDDL instances (top)
generated by the TA. A temporal plan solution (bottom) for
a set of huskies and a UAV in the environment.

case, the near-to-optimal task distribution considering goals
and robot fleet characteristics is not a guarantee.

Central Temporal Planner: The planning module is re-
sponsible for generating plans that links a robot’s actions
with the implementation of goals previously assigned to it
by the TA component. Missions are created by considering
robot capabilities and the characteristics of the environment.
This module interacts with other modules (TA and the en-
vironment) to obtain a world model that provides informa-
tion about the robot states, capabilities, and information of
the operating environment (e.g., distance between the POIs
and map of possible refuelling points, etc.). Such informa-
tion is used to generate domain and problem descriptions2

in PDDL. The task planner uses mission knowledge to gen-
erate a plan which satisfies the goal allocation restrictions
imposed by the TA component. Plans are built using the OP-
TIC planner which shows good planning performance in a
large number of domains, with domain-independent heuris-
tics and fast generation. The quality of the plan is determined
by the metrics the user needs to optimise. The most standard
is the minimisation of the makespan—the time that elapses
from the start of plan implementation to the end. However,
the OPTIC planner allows considering preferences and time-
dependent goal costs.

Figure 4 (bottom) shows a fragment of a plan solution
that involves two instances of Husky robot and a UAV (Un-
manned Air Vehicle). The user requires the robots to (i)
inspect (valveInsp), (ii) manipulate a valve (manValve)
in the environment, and (iii) check the pressure of a boiler
(checkP) in its digital panel. The UAV implements surveil-
lance tasks to provide visual information to the user. The
CTP takes as inputs the PDDL and problem files to gener-
ate a solvable plan. The plan’s solution takes into account
the TA output. For instance, TA evaluates husky1 is the

2In https://github.com/YanielCarreno/MRGA we present Task
Allocation algorithm and the domain and problems used in this
work (folder ICAPS-IntEx 2021).

best robot to implement tasks in wpg52. Therefore the plan-
ner is restricted to find a solution where the action associ-
ated with checking the pressure of the boiler (checkP) is
executed by husky1. The introduction of the High-Level
Task Planning is fundamental to achieve a sequence of ac-
tions that leads a set of heterogeneous robots from an ini-
tial state to a goal state. The planning solution responds
to a set of requirements the user presents to the system
including goals and constraints (e.g., temporal, resources,
etc.). As a result, the High-Level Task Planning provides
an executable solution that can be analysed and visualised
by the user in order to decide its implementation. In this
work, we assume each goal is a single task. However, it
does not impede the system to implement coordinated ac-
tions. For instance, action manValve requires a Husky and
a UAV. The TA finds the best robots to execute the goals
valve manipulated wpg35 (that require a Husky) and
valve inspected wpa35 (that requires a UAV), which
are effects of executing the same action. Using our cen-
tralised planning approach we deal with these types of de-
pendencies allowing the robots to coordinate their efforts.
In addition, the CPT supports reasoning regarding mission
survivability dealing with mission numeric constraints. For
instance, the actions associated with the battery recharge are
introduced by the planner that keeps robot operation require-
ments in consideration when planning.

Visual Plan Inspection
While the task planning processes will optimise the allo-
cations of robots and ensure the plan safety, human super-
visors will still be held accountable for the safe and effi-
cient progress of the mission. Thus, it is necessary to provide
them with means to assess the plan generated for them. We,
therefore, integrated the visualisation system introduced by
(Le Bras et al. 2020). This approach displays plans in three
coordinated views (see Figure 5).

Activity Chart: The activity chart follows a common repre-
sentation for planned tasks: Gantt charts. It displays sched-
uled tasks as horizontal bars, positioning them to reflect their
timing and duration (Figure 5C). In this interface, activities
are grouped by robots to highlight their individual roles in
the plan. It also connects tasks that are meant to be per-
formed in coordination (e.g. one robot manipulating an ob-
ject and another robot recording the action). This visualisa-
tion is built directly from the plan data (i.e. the list of ac-
tions).

Scene Map: While the activity chart displays the planned
actions in detail, our domain of application (offshore en-
ergy) often includes unstructured legacy installations and in-
volves unpredictable environment factors (e.g. rapid weather
changes). It becomes, therefore, necessary for the user to
also inspect the planned robots’ movements and possible in-
teractions, and assess their safety. To address this issue, the
scene map visualisation shows a top-down view of the envi-
ronment and simulates the position of robots within it, with
the robots’ elevation shown on the left (Figure 5D). Panning
the activity chart or selecting states on the time curve update



Figure 5: Screenshot of the plan visualisation interface. The plan is shown as: time curves (A) to give an overview of the
distances between robots across the plan, sliders (B) that allow the tuning of dimensions’ weights to view multi-dimensional
interactions from different perspectives, an activity chart (C) for detailed task schedule and robot coordination, and a map view
(D) for details on the robots’ positions.

the timeframe shown on the scene map, effectively animat-
ing it.

Time Curves: The two previous visualisations address the
two main requirements for plan inspection: assessing the
robots’ tasks and movements. On offshore installations,
however, there are situations when missions are made in re-
sponse to emergencies. As such, the plan assessment, no-
tably for movements, needs to be quick. From the list of ac-
tions described in the plan, the system will automatically
infer the set of robot states throughout the mission, each
with spatial and temporal coordinates. To enhance accuracy,
the system will also estimate states every 20-time units if
such interval is originally missing. The time curve visuali-
sation technique (Bach et al. 2015) proposes to marginalise
the multi-dimensional distances between states (three spatial
and one temporal) down to two dimensions (Figure 5A). As
a result, it creates a set of timelines (one per robot) distorted
to reflect the closeness of robots both spatially and tem-
porally. Note that the resulting chart expresses the robots’
states in two abstract dimensions: the composites best pre-
serving the original multi-dimensional distances. It is, there-
fore, impossible to label or interpret the axes of time curves,
however, we introduce a posterior manipulation to “correct”
the general orientation of curves, from left (start) to right
(end).

This representation allows users to get a quick overview
of the planned movements for robots and make rapid sense
of their potential interactions. The weights of dimensions
towards the time curves projection can be controlled using
sliders, allowing the user to query details (Figure 5B). If the
user decides the plan is not suited for the mission, the system
allows them to return to the problem editor interface, where
robots, goals, and preferences can be adjusted. Once content
with the plan generated for the mission, the user may trigger
its execution and monitor mission progress remotely.

Remote Mission Monitoring
We contextualise our work in the implementation of mis-
sions in remote and hazardous zones. Plan execution has
been mainly evaluated in simulation scenarios using our
ORCA-Hub simulator (Pairet et al. 2019). Our simulator is
a ROS-enabled offshore energy platform environment com-
posed of four gas and oil tower sites. Figure 6 shows a top
(left) and field (right) view of the environment. The simu-
lator supports the simultaneous deployment of multiple in-
stances of robotic platforms, thus enabling a wide range of
capabilities for cooperative inspection of large areas and
emergency response. In this work, we employ UAV (ideal
for aerial inspections) and Husky robots (medium-size robot
with large payload capabilities, capable for example of ex-
tinguishing a fire) to implement missions that require to-
tally decoupled as well as coordinated tasks. Figure 6 (right)
shows a set of robots executing the plan presented in Fig-
ure 4 which involves tasks that require different sets of ca-
pabilities.

The simulator allows the user to evaluate the performance
of the multi-robot system when executing the mission plan.
This system provides a semantic description of the offshore
energy structure, i.e., a map from 3D coordinates to high-
level labels, which bridges the human-robot communication
gap. Moreover, to ease some of the inherent robotic chal-
lenges, the simulator provides a semantic road map for au-
tonomous point-to-point navigation and collision-free plan-
ning. Figure 6 (left) shows a representation of these points in
the ground floor and the possible direction of navigation that
robots can take. The POIs defined in our PDDL problem are
directly aligned with the set of points in the road map. For
instance, the high-level POI wpg1 is defined by:

[x, y, φ, roadmap poi name, poi property],

where x, y and φ is the robot position and heading,



Figure 6: Overview of the simulator scenario with multiple
aerial and ground robots executing a mission plan. The view
of the platform shows the possible navigation paths.

poi property provides relevant location information (e.g.,
goal location, recharge point, etc.), and roadmap poi name
is the semantic tag of wpg1 in the roadmap (e.g., SE out 2).
This information enables high-level task planning to be con-
nected to the simulation execution tools. Therefore, if a plan
action asks a robot to navigate from wpg1 to wpg52 the
simulator makes use of the roadmap poi name variable to
query the roadmap for a path that connects both points.

The simulator supports Human-Robot-Interaction (HRI),
including remote interaction with the robotic platforms
through natural language commands and can receive vehi-
cle and mission status through natural language such as in-
spect the valve1. However, this work does not directly use
this type of single-action command implementation. Instead,
we are interested in leveraging the strength of AI planning
solutions to interact with multiple robots in the environment
to solve long-term missions with a large number of goals.
Moreover, the robots can reason about additional actions in
the plan which are not directly related to achieving a goal.
For instance, the plan solution can contain actions related to
recharging the robot’s battery, which is not a mission goal,
but still fundamental for successful mission execution.

Overall, our simulator provides a comprehensive platform
for developing and supporting HRI techniques, to aid in
building human-robot trust in high stakes scenarios such as
emergency response. It also enables testing of task plan-
ning algorithms for cooperative inspection and long-term
autonomy, and human-guided supervision and control of the
robotic assets from remotely located control stations. Being
able to exhaustively test these applications ensures the co-
herence and efficiency of the execution plans, thus increas-
ing the likelihood of adoption of robotics and autonomous
systems for high-risk environments.

Planning and Execution
Robustness is a fundamental requirement for the success
of complex robotic missions in extreme environments, re-
quiring the consideration of mission failures, adaptability
and survivability. Figure 7 shows a general description of
the three elements involved in the mission implementation:
Planning Framework (PF), Planning Execution Framework
(PEF), and Plan Deviation Analyser (PDA). This architec-
ture is an extension (grey components represent the addi-

Figure 7: Framework for offline-online plan generation and
execution. The system presents three main parts: Planning
Framework (PF), Plan Execution Framework (PEF) and Plan
Deviation Analyser (PDA).

tions) of ROSPlan (Cashmore et al. 2015). Here, we did not
mention the users, considering this process occurs when they
decide the plan obtained in the Development and Review
phases (see Figure 1) can be executed. However, in the Su-
pervision phase, the user can decide to stop the mission and
replan it. In this section, we aim to describe the processes of
plan dispatch, execution, and replanning in case of failures.
We consider the system can adapt to a set of mission failures.
Therefore, we evaluate the system’s ability to overcome un-
expected situations as a consequence of using an incomplete
domain model.

The PF encloses the process of generating a plan solu-
tion. The planner produces plans using a domain model and
a problem which are inputs to the Knowledge-Base (KB). As
a result of using the PF we have a parsed plan available to be
executed. The PEF dispatches the plan to a set of robots us-
ing the Plan Dispatch and Action Dispatch components from
ROSPlan. The robotic platforms receive the actions through
the action interface and provide feedback on the execution.
If the action is successfully completed the next action in the
plan is dispatched. If an action fails, however, further action
dispatches are cancelled.

Plan Deviation Analysis: Our system introduces the PDA
framework which can be used in two different cases:

• Case 1: There is a failure associate with the implementa-
tion of the action that makes the PEF to cancel the Plan
Dispatch and claim replanning.

• Case 2: The Performance Detection component of the
PDA detects possible problems during the execution of
the action and interacts with the system to deal with them
at the execution time.

In Case 1, the PDA takes the information the plan fails
without completing all mission goals. The system checks the
action that fails and queries the KB to evaluate possible rea-
sons that guarantee the new plan solution is solvable. For
instance, a Husky lost track of the image reconstruction of a
structure while it is mapping an area. The PDA will consider
the last location the quality of the map was acceptable and it



Figure 8: Makespan performance (offline) and real mission execution times (online) for 20 problem instances over 100 experi-
ments (left). Makespan performance for different battery thresholds (right) for 10 problem instances over 50 experiments.

will add this information to the KB; based on the feedback
from this evaluation, the system decides the next step. In ad-
dition, the PDA will evaluate other required preconditions to
execute actions that were removed from the KB during ex-
ecution and add them. For instance, if action navigate re-
quires knowing the robot location (precondition robot at
?r - robot) the PDA adds the robot’s actual location to
the KB before calling the planner to replan.

In Case 2, replanning is not needed. The PDA aims to
observe the execution of particular actions and identify pos-
sible problems that might force the system to replan in the
future. For instance, a Husky navigates from wpg1 to wpg52
and the navigation is delayed, as a consequence, the robot
took longer to reach the second floor (wpg52 location). The
PDA can suggest the Husky to increase the speed to com-
plete the action in the required time. These suggestions will
depend on the action and robot characteristics that are de-
fined in the Mission Ontology (MO). This type of online so-
lutions makes robots adapt their behaviour while executing
the plan avoiding the need for replanning. The MO is pop-
ulated with multiple properties associated with all actions.
Therefore, we can have a set of propositions to deal with
failures associated with domain actions.

Performance Evaluation: Our framework can store data re-
lated to (i) offline planning, (ii) online planning, (iii) ex-
ecution, and (iv) sensing information. This data includes
mission goals; actions failures; planning time; makespan
(at planning time and during the execution); and data as-
sociated with the sensors involved in the mission. Figure 8
shows examples of the results the framework can present.
The first, shows the makespan performance and mission ex-
ecution times for a set of 20 missions (some of them can take
a day approximately). Results exhibit the execution times
differ from the plan makespan originally obtained in a set
of missions. The acquisition of this information over time
allows planning experts to enhance model accuracy, system
adaptability, and plan optimisation. Figure 8 (right) shows
execution performance for the first 10 missions considering
the Husky needs to recharge for different battery levels (bat-
tery life ∼ 5 hours and recharge time ∼ 2 hours). These re-
sults indicate best performance is obtained when the thresh-
old for recharging is 40%. For 60% makespan increases sub-

stantially and for 20% and 30% the planner cannot solve all
missions. However, we can use these small values to execute
certain problems (e.g., 1 and 2) as the execution times are re-
duced as a result the Husky does not need to recharge. This
information can be useful to the user to define which is the
best time to recharge the battery of the robots to avoid un-
expected situations where robots fail to maintain long-term
operations. This project leads to a set of new autonomous so-
lutions for extreme environments. Our framework supports
the plan’s evaluation considering industry-standard metrics
such as implementation times and mission survivability.

Conclusion and Future Work
In this paper, we presented an end-to-end framework for
planning and executing remote missions for multiple coor-
dinated heterogeneous robots. Our system targets two main
goals: providing oversight capabilities to human operators
for safety and accountability while ensuring a robust im-
plementation of long-term autonomous activities. In partic-
ular, the system is designed around three mission stages:
plan generation, plan inspection and plan monitoring during
mission execution. Overall, the proposed framework enables
non-expert users to plan missions in complex environments
which, we believe, constitutes a robust system for integrat-
ing AI planning solutions in industrial applications.

As future work, we are considering some additions to this
framework. While our plan deviation analysis provides an-
swers to exceptions occurring during execution, integrating
contingencies into the plan generation process would also
provide additional benefits reducing the amount of replan-
ning needed during mission execution, and redefining mis-
sion goals or preferences by considering contingent plans. A
second addition to our framework would be to implement an
interface for users to visualise the performance of previous
missions. Such a tool would allow planned activities to be
analysed and compared against the reality of execution, un-
derstand the pitfalls or strengths of past missions, and make
better judgements when developing new plans.
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