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Abstract— Reasoning about object handover configurations
allows an assistive agent to estimate the appropriateness of
handover for a receiver with different arm mobility capacities.
We propose a method that generalises handover behaviours
to previously unseen objects, subject to the constraint of a
user’s arm mobility levels and the task context. We propose
a heuristic-guided hierarchically optimised cost whose optimi-
sation adapts object configurations for receivers with low arm
mobility. This also ensures that the robot grasps consider the
context of the user’s upcoming task, i.e., the usage of the object.
To understand preferences over handover configurations, we
report on the findings of an online study, wherein we presented
different handover methods, including ours, to 259 users
with different levels of arm mobility. We find that people’s
preferences over handover methods are correlated to their
arm mobility capacities. We encapsulate these preferences in a
statistical relational learner (SRL) that is able to reason about
the most suitable handover configuration given a receiver’s arm
mobility and upcoming task. This proposal is published in [1].

I. INTRODUCTION

Many scenarios in which robots assist humans inevitably
involve robot-to-human object handovers—the transfer of
objects from a robot to a human [2]. Beyond success-
fully transferring objects, handovers should minimise effort
needed from the human. This not only includes effort to
take the object, but also effort to use the object afterwards.
For example, imagine a robot handing over a bottle to a
person who intends to drink from it. The robot’s choice
of how to grasp and locate the bottle for the exchange
determines how the person will take the object. Hence, in
making those choices, the robot should aim to minimise the
human’s need to extend their arm, offering the bottle in a
pose that facilitates drinking without needing to re-grasp the
bottle. A method able to adapt robot handovers, with the goal
of minimising the person’s effort, is particularly convenient
for users with arm mobility impairments, where usually the
mobility condition changes over time [3].

In [1] we present a method for automatically selecting
handover grasps and poses by explicitly taking into account
differences in the human receiver’s arm mobility while min-
imising effort. We consider the handover to be composed of
a suitable robot grasp that considers the receiver’s upcoming
task, and an object pose that is safe and reachable depending
on the user’s arm mobility level. A summary of our approach
in [1] is depicted in Fig. 1. Firstly, we pose the problem

This research was done while the first author was on an academic
visit to the University of Washington. It is supported by the Scottish
Informatics and Computer Science Alliance (SICSA), EPSRC ORCA Hub
(EP/R026173/1) and consortium partners. ∗Edinburgh Centre for Robotics
at the University of Edinburgh and Heriot-Watt University, Edinburgh,
Scotland, UK. †Paul G. Allen School of Computer Science & Engineering,
University of Washington, Washington, USA. paola.ardon@ed.ac.uk

SRL

User Study

ΨO1

gr2

gr1

gr3
ΨO2

ΨO3

Cost Model

Appropriate
handover

Fig. 1: Summary of [1]. On the left, simulated generation
of robot grasps gr and object poses ΨO for handovers using
our proposed cost model. On the right, real world deployment
of a found suitable handover using our learned SRL model,
given the user arm mobility and upcoming task.

as hierarchical optimisation with a cost model that adapts
to the receiver’s mobility constraints, while considering the
intended use of the object. Secondly, we evaluate our model
through an online survey in which 259 participants with
mixed arm mobility limitations rate different handover poses,
including the ones generated with our method. An analysis
of the responses shows that handover preferences vary signif-
icantly across users with different arm mobility capacities,
with mobility impaired individuals showing higher prefer-
ence towards handovers selected with our method. Finally,
we extend our method to generate handover configurations
for previously unseen objects using a statistical relational
learner (SRL). Using our SRL we obtain an average handover
pose accuracy of 90.8% across different mobility levels and
upcoming tasks with novel objects.

II. HANDOVER OPTIMISATION WITH
MOBILITY CONSTRAINTS

In [1] we propose a robot-to-human handover method that
adapts object configurations to people with different arm
mobility. Particularly, we define the handover configurations
considering the receiver’s (i) upcoming task, to extract an ad-
equate robot grasp, and (ii) arm mobility capacities to adapt
the object’s pose for the transfer. To achieve such a reasoning
model (details in [1]), first we need to design a method
that adapts to people with low arm mobility. Then, we need
to analyse preferences over handover methods across users
with different arm mobility capacities (Section III presents
the online user study). This section details the design of
our heuristic-guided hierarchically optimised cost model that
adapts handovers to users with low arm mobility.

Current robotic handover methods consider preferences
over objects and robot grasp configurations that are not de-
signed for receivers with arm mobility impairments. In con-
trast, with the insight that less effort means more comfort for



the receiver [3], [4], we model a handover cost that adapts to
users with low arm mobility. The heuristic-guided hierarchi-
cally optimised cost model extracts (i) the most suitable robot
grasp given the receiver’s upcoming task, and (ii) a transfer
object configuration located at a reachable yet safe location
for the user. We efficiently guide the configuration search
through a user-configurable resolution workspace grid map.

The resulting map is composed of {x,y, z} voxels
mx,y,z ∈ M{x,y,z}. Each voxel mx,y,z encapsulates:
(i) non-controllable human values or constants, in our case
the human hand Ψhh, face pose Ψhf , and the choice of
grasp when receiving the object gh; and, (ii) cost-constrained
variables which are the configurations we want to optimise,
in our case the robot grasp gr, and object pose ΨO. As a
result, the map is a function ofM{x,y,z}(gr,ΨO). We guide
the hierarchical optimisation through three costs, as shown
in Fig 2. Firstly, we compute an optimal appropriateness
cost CA that gives a suitable robot grasp gr from a set of
grasp affordance configurations ĝr ∈ Gr. Secondly, using the
previously found gr, we sample for safe object configurations
ΨO using the safety cost CS . This cost is constrained to those
object poses Ψ̂O where there is a feasible inverse kinematic
solution for the end-effector Ψree to proceed with the grasp
gr, denoted as f(Ψ̂O, gr) 6= ∅. Finally, in the reachability
cost CR, we minimise the displacement of the user arm.
Given ΨO, we inform the search for the closest mx,y,z in
R3 and find the optimal object configuration ΨO in SE(3):

min
m∈M

CR(ΨO)

with ΨO = arg max
Ψ̂O∈m

CS(Ψ̂O, gr) s.t Ψree ← f(Ψ̂O, gr) 6= ∅

with gr = arg max
ĝr∈Gr

CA(ĝr). (1)

Appropriateness CA(ĝr) is calculated in the object affor-
dance space and it extracts the grasp configuration the robot
should choose depending on the receiver’s future task. De-
pending on the level of human arm mobility impairment, the
hand dexterity may vary considerably and, thus, the human
choice of grasps. This is a subject worthy of future study.
Although we cannot control the human grasp directly, we
can leave the object’s part that affords the receiver’s chosen
action occlusion free. Thus, we implicitly offer the receiver
the most suitable grasping region. We reason about gr, gh
and the object affordances regions aO using the Markov
logic network (MLN) knowledge base (KB) from our earlier
work [5]. The KB in [5] is composed of data collected
from human users, thus being suitable for the handover task,
as well as inferring suitable actions. We consider two sets
of grasp configurations: (i) human grasps are configurations
inside the object affordance region gh ∈ aO, while (ii) robot
grasps are outside, gr = aO \ gh. The final goal in (1) is
to choose a gr that maximises the distance from the closest
possible (i.e., most constraining) gh:

CA(ĝr) = min
gh∈aO

d(ĝr, gh), (2)

thus, guiding appropriate grasps for giver and receiver.
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Fig. 2: Summary of our heuristic-guided hierarchically opti-
mised cost model. Each block corresponds to (2)-(4).

Safety CS(Ψ̂O, gr) is considered in terms of distance
between the robot to human. The further away from the
human user the robot’s manipulator is, the safer it is. Thus,
we maximise the distance from the object pose Ψ̂O, projected
in aO, to the human hand Ψhh and face Ψhf , as well as from
the Ψree to Ψhh. We penalise the cost if any of the distances1

is below a threshold th of 5cm:

CS(Ψ̂O, gr) =

{
d(Ψ̂O,Ψhh) + d(Ψ̂O,Ψhf ) + d(Ψree,Ψhh), if d(·) ≥ th

0, otherwise.
(3)

Reachability CR(ΨO) is introduced to minimise the re-
ceiver’s arm displacement, thus effort [3], [4]. This cost
promotes object configurations located as close to the human
hand as possible, consequently, adapting to users with low
arm capacities. Specifically, CR(ΨO) penalises the human
hand movement from the current pose to the implicitly
advised grasp gh. [6] suggested that 75cm is a reachable
object transfer location, as such, we use it as th to penalise
greater distances:

CR(ΨO) =

{
d(Ψhh, gh), if d(·) ≤ th

∞, otherwise.
(4)

In summary, using (1), the robot obtains the most ap-
propriate robot grasp given the receiver’s task and a safe
yet reachable object configuration. As a result, adapting
handovers to users with low mobility impairments. Fig. 2
summarises the heuristic-guided hierarchically cost model.

III. USER HANDOVER PREFERENCES

To implement an inclusive handover method that adapts
to people with different arm mobility levels (as presented

1The distances between poses are calculated in quaternion using ROS
Pose messages.
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Fig. 3: First row: video frame samples of the methods
presented to the users. Second row: objects in the online
study with our detected gh (purple) and gr (ochre).

in [1]), we need to explore users preferences on handover
methods. In this section, we summarise the data collection
and evaluation of the users’ perception presented in [1].

A. User Study Setup

For the user study we consider three different handover
methods. As method-A, we implement a handover technique
following the guidelines in [6], [7]. These works extract the
optimal object transfer point. As in [6], [7], for method-A
we set the object transfer point at a distance of 75cm from
the human body and an arbitrary robot grasp. As method-
B, we use [8]’s suggested transfer location at 50cm and a
robot grasp that considers the receiver’s upcoming task. As
method-C, we use our proposal in [1]. The first row of Fig. 3
shows an example of an object’s final pose for each handover
method. To the participants, neither the methods’ details nor
name were disclosed. For the reminder of this manuscript
method-C will be referred to as ours.

B. Data Collection

We collected our data through an online survey to guar-
antee social distancing rules to our participants. Contrary to
previous works, our goal is to achieve an inclusive robot-
human handover technique. This was done in collaboration
with Chest Heart and Stroke Scotland (CHSS)2 to recruit par-
ticipants that suffer from arm mobility impairments. Through
CHSS, we recruited a total of 9 volunteers. Additionally, we
used Amazon’s Mechanical Turk platform, to obtain opinions
from 250 people with varied arm mobility capacities. We
presented to each participant 3 different short clips. Each clip
with a different handover method, explained in Section III-
A. The 3 clips were randomised among 5 objects using
counterbalance design. The 5 objects are of common use on
activities of daily living (ADL) by people with amyotrophic
lateral sclerosis (ALS) [9] (Fig. 3, second row).

C. Systematic Analysis of User Input

We examine the participants’ responses to detect handover
preferences. Guided by our hypothesis, we analyse the data

2Health charity for rehabilitation https://www.chss.org.uk/

to show the influence of arm mobility level and handover
technique interaction. Detailed results can be found in [1].
Fig. 4 shows a summary of the findings as extracted from the
5-point scale metric. The higher on the scale the safest, more
comfortable or appropriate the handover method is. As men-
tioned in Section III-B, we create animations for the users to
identify their arm mobility level. The participants identified
themselves in either of the 4 shown animations: high (H),
high-medium (H-M), low-medium (L-M), and low (L) arm
mobility. For each of the levels, we illustrate the mean and
standard deviation of the three handover methods included in
the study. Our analysis involves a normally distributed two-
way repeated-measures analysis of variance (ANOVA), using
the handover methods and users arm mobility as factors, and
user ID as repetitions.

For perceived safety, there is no significant difference
across methods as rated by users in groups H and H-M.
For perceived appropriateness of the robot grasp given the
user upcoming task, there is a significant difference across
method-A and ours for all arm levels. The gap between
the method-A and the other two methods is noticeable. On
average, our method is perceived positively by the users.
Nonetheless, the preference for our method over the other
two setups is clearer in participants that reported lower levels
of arm mobility (i.e., L-M and L).

We also asked the participants to choose their overall
preferred handover method. Table I shows a summary of
the preference distribution as related to arm mobility levels.

The participants ranked, from most to least important, the
following aspects: (a) safety, (b) comfort, (c) naturalness of
the handover, (d) appropriateness of the robot grasp given the
receiver’s upcoming task, and (e) that the robot moves more
than the human to reach the object transfer location (i.e.,
shared effort). Fig. 5 illustrates the median rank consensus
per arm mobility level. The resulting ranking demonstrates
the difference in priorities, especially on the extremes of the
arm mobility level spectrum. For example, for H and H-M
feeling safe and comfortable is the top priority. In contrast,
for L-M and L the preference fluctuates between the robot
moving more than the human to transfer the object and
obtaining the object in a configuration that they can easily
use afterwards. As in Table I, Fig. 5 reiterates that users with
lower arm mobility prefer a technique that brings the object
closer to the hand. Detailed statistics are shown in [1].

Finally, we asked in an open-ended question how the
users feel about robot-human handover collaboration tasks.
Table II shows a sample set of responses. Per arm level,

participants Handover method preference overall
method-A method-B ours

H 179 23.5% 73.7% 2.8%
H-M 27 23.1% 65.4% 11.5%
L-M 18 7.1% 28.6% 64.3%

L 35 3.2% 16.1% 80.7%

TABLE I: Distribution of participants per arm mobility level
as they chose their preferred handover method.

https://www.chss.org.uk/
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F=3.87, p=0.04 F=3.12,p=0.02F=9.83,p=0.003 F=2.18,p=0.01 F=9.56,p=0.002 F=3.76,p=0.03F=9.43,p=0.003

F=8.81,p=0.003 F=3.94,p=0.038
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Fig. 4: Mean and variance of participants perception on safety, comfort and appropriateness in a 5-point scale metric.
Evaluation includes two-way repeated ANOVA. Only significant statistical results are shown, i.e., with a p < 0.05.

% Sample of positive responses % Sample of negative responses
H 23.5 “... AS LONG AS it is safe I WOULD BE COMFORTABLE” 24 “It DEPENDS ... because of the risk of something happening

that the robot cannot ADAPT”
H-M 57.7 “ I’D FEEL COMFORTABLE IF the robot’s help is convenient ...” 7.7 “It DEPENDS on the object and the setting”
L-M 50 “... I FEEL COMFORTABLE, it behaves USEFULLY” 7.14 “... make sure that I am able to override its functions with voice

commands if it malfunctions or behaves UNEXPECTEDLY”
L 64.5 “It looks COMFORTABLE. I am the primary care taker of my

sister. This could be really USEFUL for her ...”
3.32 “I WOULD ONLY be worried about dangerous objects”

TABLE II: High recurrent words in users’ responses. The % indicates the appearance events of the KEYWORDS sets.

we created a word count of the responses and extracted
sets of words appearing with higher frequency. Some of the
extracted sets imply a positive opinion about the task, while
others suggest a negative or doubtful perception of the robot’s
performance. Some examples are shown in Table II. By
putting these words in context, it is clear that, depending on
the mobility level, some participants accept the collaboration
with reservations while others perceive the robot as a helper,
thus supporting the ranking on Fig. 5.

IV. CONCLUSIONS AND FUTURE WORK

In summary, although users in general prefer a method that
considers their upcoming task, there are different preferences
related to user arm mobility capacities. Receivers with low
levels of arm mobility prefer the robot to perform most of the
handover task, while users with high mobility choose to have
some freedom and share the task effort. These preferences are
then encapsulated in a SRL, the generalisation capabilities of
such learned model are detailed in [1].

Our proposal motivates future research in different di-
rections. First, in-person human-robot interaction settings to
study the receiver’s acceptance levels. This includes further
research on the trade-off between reachability and safety
optimisation criteria by considering a weighted or a SRL

Fig. 5: Median rank consensus per arm mobility of the
considered aspects that influence a handover task.

influenced cost function that allows to adapt online. Second,
the refining of the appropriateness cost with human grasps
extracted from human-human handover studies. Finally, the
study of failure and recovery alternatives for cases when the
robot grasp is not socially acceptable for the handover task,
and ways to enrich our SRL model to prevent such scenarios.

REFERENCES
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