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Abstract. In an attempt to confer robots with complex manipulation
capabilities, dual-arm anthropomorphic systems have become an impor-
tant research topic in the robotics community. Most approaches in the
literature rely upon a great understanding of the dynamics underlying
the system’s behaviour and yet offer limited autonomous generalisation
capabilities. To address these limitations, this work proposes a modelisa-
tion for dual-arm manipulators based on dynamic movement primitives
laying in two orthogonal spaces. The modularity and learning capabili-
ties of this model are leveraged to formulate a novel end-to-end learning-
based framework which (i) learns a library of primitive skills from human
demonstrations, and (ii) composes such knowledge simultaneously and
sequentially to confront novel scenarios. The feasibility of the proposal is
evaluated by teaching the iCub humanoid the basic skills to succeed on
simulated dual-arm pick-and-place tasks. The results suggest the learn-
ing and generalisation capabilities of the proposed framework extend to
autonomously conduct undemonstrated dual-arm manipulation tasks.

Keywords: Learning from Demonstration · Humanoid Robots · Model
Learning for Control · Dual Arm Manipulation · Autonomous Agents.

1 INTRODUCTION

Complex manipulation tasks can be achieved by endowing anthropomorphic
robots with dual-arm manipulation capabilities. Bi-manual arrangements extend
the systems competences to efficiently perform tasks involving large objects or as-
sembling multi-component elements without external assistance. These systems
not only deal with the challenges of single-arm manipulators, such as trajectory
planning and environmental interaction, but also require an accurate synchroni-
sation between arms to avoid breaking or exposing the handled object to stress.

Traditional approaches have addressed the aforementioned challenges by means
of control and planning-based methods [18]. These methods depend upon an ex-
cellent understanding of the exact model underlying the system’s and task’s
dynamics, which are commonly approximated to make the calculations compu-
tationally tractable [13]. On top of that, some of these methods lack scalability
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Fig. 1. iCub humanoid learning to contour an obstacle through kinaesthetic guiding
(left), and composing multiple skills to conduct a dual-arm pick-and-place task (right).

and generalisation capabilities, involving hand-defining all possible scenarios and
actions [5, 3]. All these issues have motivated the use of more natural techniques
for robot programming, such as learning by demonstration (LbD), in which a
human movement is recorded to be later reproduced by a robot.

Despite the encouraging possibilities offered by adopting human knowledge
for robot control, teaching complex systems, such as dual-arm manipulators,
to respond and adapt to a broad case of scenarios remains an open challenge.
Particularly, it is expected from a dual-arm system to generalise the provided
demonstrations to confront novel scenarios in (a) the task space to deal with
the changing requirements about trajectory planning and environmental inter-
action, and (b) the relative space to ensure the essential synchronisation be-
tween arms [12]. However, current learning-based architectures in the literature
pursuing autonomy and robustness against the dynamic and unpredictable real-
world environments are limited to single-arm arrangements [15, 17, 4]. Contrarily,
learning-based frameworks for dual-arm robots do not generalise to undemon-
strated states, thus being limited to highly controlled scenarios [21, 7, 19].

This paper presents a novel learning-based framework which endows a dual-
arm system with a real-time and generalisable method for manipulation in un-
demonstrated environments (see Figure 1). The framework models a dual-arm
manipulator with a set of dynamic movement primitives laying in two orthogo-
nal spaces to tackle the task’s requirements separately from the synchronisation
constraints. The modularity of the DMPs is leveraged to (i) create a library
of primitive skills from human demonstrations, and (ii) exploit primitive skills
simultaneously and sequentially to create complex behaviours. The potential of
the proposal is demonstrated in simulation after recording skills with the iCub
humanoid through kinaesthetic guiding. The results suggest the proposal’s suit-
ability to endow a dual-arm robot with the necessary learning and generalisation
capabilities to autonomously address novel manipulation tasks.

2 DUAL-ARM SYSTEM MODELISATION

This paper pursues an end-to-end learning-based framework which endows a
dual-arm system with enhanced generalisation capabilities, meets the synchro-
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nisation constraints, and is easily programmable by non-robotics-experts. This
work addresses all these requirements by means of learnable and composable
primitive skills represented as dynamic movement primitives (DMPs) [9]. This
section firstly overviews DMPs and its use in the literature. It then introduces
the proposed typology of actions in a dual-arm system, which allows leveraging
the strengths of a DMP-based modelisation in the dual-arm context.

2.1 Dynamic Movement Primitives

DMPs are a versatile tool for modelling and learning complex motions. They
describe the dynamics of a primitive skill as a spring-damper system under the
effect of a virtual external force called coupling term. This coupling term allows
for learning and reproducing any dynamical behaviour, i.e. primitive skill. Im-
portantly, (a) coupling terms can be learnt from human demonstrations, (b) they
can be efficiently learned and generated, (c) a unique demonstration is already
generalisable, (d) convergence to the goal is guaranteed, and (e) their represen-
tation is translation and time-invariant. Because of all these properties, DMPs
are adapted to constitute the fundamental building blocks of this work. Next
follows an introduction about DMPs and their usage to encode positional and
orientational dynamics, and an overview of some coupling terms in the literature.

Positional Dynamics. Let the positional state of a one-degree of freedom
(DoF) system be defined by its position, linear velocity and acceleration. Then,
the system’s state transition is defined with non-linear differential equations as:

τ ż = αx(βx(gx − x)− z) + fx(·), (1)
τ ẋ = z, (2)

where τ is a scaling factor for time, x is the system’s position, z and ż respec-
tively are the scaled velocity and accelaration, αx and βx are constants defining
the positional system’s dynamics, gx is the model’s attractor, and fx(·) is the
coupling term. The coupling term applying at multiple DoFs at once is defined
as fx(·). The system will converge to gx with critically damped dynamics and
null velocity when τ > 0, αx > 0, βx > 0 and βx = αx/4 [9].

Orientational Dynamics. A possible representation of orientations is the unit
quaternion q ∈ R4 = S3 [20]. They encode orientations of a system as a whole,
thus ensuring the stability of the orientational dynamics integration. Let the
current orientational state of a system be defined by its orientation, angular
velocity and acceleration. Then, the orientational state transition is described
by the following non-linear differential equations:

τ η̇ = αq(βq 2 log(gq ∗ q̄)− η) + fq(·), (3)

τ q̇ =
1

2
η ∗ q, (4)
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where q is the system’s orientation, η and η̇ respectively are the scaled angular
velocity and acceleration, αq and βq are constants defining the system’s dynam-
ics, gq ∈ S3 is the model’s attractor, and fq(·) ∈ R4 is the coupling term. The
operators log(·), ∗, and q̄ denote the logarithm, multiplication and conjugate
operations for quaternions, respectively.

Coupling Terms. Coupling terms describe the system’s behaviour, thus be-
ing useful to learn and retrieve any primitive skill. They are commonly used
to encode the positional [9] and orientational [20] dynamics of a motion. Cou-
pling terms are modelled in each dimension as a weighted linear combination of
non-linear radial basis functions (RBFs) distributed along the trajectory. Thus,
learning a certain movement relies on finding the weights of the RBFs which
closely reproduce a demonstrated skill.

More complex behaviours may be achieved by exploiting an additional cou-
pling term simultaneously with the motion-encoding one. This approach has
been used to avoid joint limits and constraining the robot’s workspace via repul-
sive forces pushing the system away from these limits [6]. Coupling terms have
also been leveraged for obstacle avoidance with an analytic biologically-inspired
approach describing how humans steer around obstacles [8, 17]. Another use is
for environmental and self-interaction purposes by means of a controller tracking
a desired force profile [7]. To the best of the authors’ knowledge, the practice
of using coupling terms simultaneously has been limited to two primitive skills
acting on the same frame or space [15]. Contrarily, this work further exploits the
DMP modularity to describe a dual-arm system in two orthogonal spaces with
the purpose of facing complex scenarios by composing multiple coupling terms.

2.2 Dual-arm Primitive Skills Taxonomy

Skills for single-arm manipulation have been well analysed in the robotics com-
munity. While some of this knowledge can be extrapolated for a dual-arm ma-
nipulator as a whole, their complexity resides in the arms interaction. In the
context of manipulation via a dual-arm system, a possible classification of any
primitive skill falls into two groups: (a) absolute skills, which imply a change of
configuration of the manipulated object in the Cartesian or absolute space Sa,
e.g. move or turn an object in a particular manner, and (b) relative skills, which
exert an action on the manipulated object in the object or relative space Sr, e.g.
opening a bottle’s screw cap, or hold a parcel employing force contact.

Each type of primitive skill uniquely produces movement in its space since
they lay in orthogonal spaces such that Sa ⊥ Sr. It is natural to expect from
a dual-arm system to simultaneously carry out, at least, one absolute and one
relative skill to accomplish a task. Let us analyse the task of moving a bottle to a
particular position while opening its screw cap. Both end-effectors synchronously
move to reach the desired configuration (absolute skill). At the same time, the
left end-effector is constrained to hold the bottle upright (relative skill), while
the right end-effector unscrews the cap (relative skill).
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2.3 Dual-arm DMP-based Modelisation

Given the variety of primitive skills that a dual-arm system can execute, this
work seeks to model the robotic platform in a generalisable yet modular fashion,
which accounts for both absolute and relative skills. To this aim, let us consider
the closed kinematic chain depicted in Figure 2 operating in a three-dimensional
(3D) workspaceW = R3 × SO(3). Each arm i, where i = {L, R}, interacts with
the same object O. In this context, the absolute skill explains the movement of
the object O in the workspace W = Sa, while the relative skill describes the
actions of each end-effector i in Sr, i.e. with respect to the object’s reference
frame {O}. Note that {O} is the centre of the closed-chain dual-arm system.

The state of the closed-chain dual-arm system in the workspace can be de-
scribed by the position/orientation, linear/angular velocities and accelerations
of {O} in Sa. As introduced previously, the system’s state transition is subjected
to its modelled dynamics. Figure 2 illustrates the proposed modelisation of the
system’s dynamics in Sa as a set of DMPs acting between the objects’s frame
{O} and its goal configuration go, which accounts for a desired goal position
gox ∈ R3 and orientation goq ∈ R4. Therefore, three positional DMPs as in (1)-
(2) and one orientational DMP as in (3)-(4) are required to encode the system’s
dynamics in the absolute space Sa = R3 × SO(3).

In the relative space Sr, the dynamics of each end-effector are modelled as
DMPs referenced to the objects’s frame {O}. Since Sr = R3 × SO(3), each end-
effector dynamic’s in the relative frame is described by three positional DMPs
as in (1)-(2) and one orientational DMP as in (3)-(4).

Any action referenced to the object’s frame can be projected to the end-
effectors using the grasping geometry G of the manipulated object. This allows
computing the required end-effector control commands to achieve a particular
absolute task. A detailed explanation of this transformation can be found in [12].

Fig. 2. DMP-based modelisation of a closed-chain dual-arm system in the absolute and
relative spaces. This model is extended to deal with rotational dynamics.
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3 LEARNING-BASED DUAL-ARM MANIPULATION

To endow a dual-arm manipulator with autonomy and robustness in novel sce-
narios while being easily programmable and customisable by non-robotics-experts,
this work has decomposed and modelled the system’s dynamics and synchroni-
sation constraints as primitive skills lying in the system’s absolute and relative
space. Leveraging the formulated modelisation, this work proposes the frame-
work schematised in Figure 3 which creates and manages a library of primitive
skills. The framework has two components: (i) a learning module that learns a
set of primitive skills from human demonstrations, and (ii) a manager module
that combines simultaneously and sequentially these primitives to address a wide
range of complex tasks in unfamiliar environments.

3.1 Library Generation

A primitive skill is represented by its coupling term and frame of reference,
i.e. either absolute or relative. Learning coupling terms only requires a human
demonstrator teaching the characteristic skill. As previously introduced, different
coupling terms might be better formulated with different mathematical represen-
tations, e.g. a weighted combination of non-linear RBFs to encode the dynamics
of a task, an analytical obstacle avoidance expression, or among others, a force
profile to control the environmental interaction.

The modularity offered by the proposed DMP-based formulation and its use
in two different spaces tackles the hindrance and ambiguity arising when demon-
strating all features of a dual-arm task in an all-at-once fashion. This means
that instead of learning a task as a whole, the framework harvests a collection
of primitive skills. Creating a repertoire of skills referred to as a library, allows
the demonstrator to teach in a one-at-a-time fashion, i.e. to focus on one fea-
ture of the demonstration at a time [4]. Moreover, this modular library can be

Primitive	
skill	1

Relative
task

RECORDING ENCODING GENERALISING MERGING EXECUTING

Environment Sensors	feedback

LEARNING	MODULE MANAGER	MODULE

Primitive	
skill	2

Primitive	
skill	n
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task

Composed	
task

Demonstration
(primitive	skill	n)
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Fig. 3. Scheme of the proposed framework. (a) Learning: a library of primitive skills
is learnt from human demonstrations. Manager: the primitives are combined simulta-
neously and sequentially to confront novel environments. (b) The required primitive
skills are selected according to the affordance elements of the dual-arm task.
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employed for movement recognition purposes, where a demonstrated skill can
be compared against the existing ones in the library. If the observed behaviour
does not match any existing primitive, it is identified as a new skill and can be
added to the framework’s library [10].

3.2 Attaching Semantics

The framework needs additional information to successfully conduct a dual-arm
manipulation task. Let us consider the robotic task of opening a bottle’s screw
cap, where the system needs to select a proper sequence of primitive skills in
order to succeed (see Figure 3(b)). This is first a grasping, where each end-
effector holds a different component of the bottle, then a synchronous turning
referenced in the system’s relative space and finally, a placing and releasing
primitives. Therefore, in order to ease this action selection, it is essential to
attach a semantic description to each primitive skill.

Semantic labels bridge the gap between the low-level continuous representa-
tion of primitives and the high-level description of actions and their influence
on objects. An approach to tackle the object affordances challenge consists in
combining features from the object and their surroundings to infer on a suitable
grasp-action based on their purpose of use [1, 2]. The combination of such ele-
ments builds the relationship between context, actions and effects that provide
a cognitive reasoning of an object affordance.

3.3 Library Management

Each coupling term stored in the framework’s library represents a particular ab-
solute or relative primitive skill. Reproducing a skill consists in using its coupling
term as fx(·) or fq(·) in (1)-(4). This computation retrieves the skill’s required
accelerations, which can be integrated over time to obtain the skill’s velocities
ẏo for an absolute primitive or ẏCi

for the end-effector i relative primitive.
The individual retrieval of primitives already accounts for the inner DMP

generalisation capabilities, such as different start and goal configurations, as
well as obstacle locations. However, these primitive skills need to be combined
to generate more complex movements, such as a pick-and-place task of a bot-
tle accounting for the presence of unexpected obstacles (absolute space), while
opening the bottle’s screw cap considering the exerted force (relative space).
The presented framework addresses this prerequisite by simultaneously combin-
ing different absolute and relative skills as:[

ẏL

ẏR

]
= GT

J∑
j=1

wj ẏoj +

K∑
k=1

wk

[
ẏCL,k

ẏCR,k

]
, (5)

where ẏi ∈ R6 describes the linear and angular velocity commands of the i = {L, R}
end-effector satisfying the set of activated primitive skills, G ∈ R6×12 is the
global grasp map of the two end-effectors grasp matrices as described in [13],
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and ẏoj ∈ R6 and ẏCi,k
∈ R6 are the velocities of the j ∈ [1, J ] absolute and

k ∈ [1, K] relative primitive skill stored in the library. Absolute and relative
skill selection is conducted with the weights wj and wk, respectively.

The resulting framework does not only combines skills simultaneously, but
also sequentially. This allows the execution of a complex task composed of a
sequence of primitives. To do so, a primitive skill is executed by initialising it
with the full state (pose, velocities and accelerations) of its predecessor primitive
skill. Such an initialisation avoids abrupt jumps in the system’s state.

4 RESULTS and EVALUATION

The proposed framework has been evaluated on the iCub humanoid robot. Par-
ticularly, the real platform has been used to load the framework’s library with a
set of primitive skills learnt from human demonstrations. These skills have been
employed in simulation to conduct dual-arm pick-and-place tasks of a parcel in
novel scenarios, demonstrating the proposal’s potential for humanoid robots.

4.1 Experimental Platform

iCub is an open source humanoid robot with 53 DoFs [11] (see Figure 4(b)). The
most relevant ones in this work are the three-DoFs on the torso, the two seven-
DoFs arms equipped with a torque sensor on the shoulder, and the two nine-DoFs
anthropomorphic hands with tactile sensors in the fingertips and palm.

iCub operates under YARP. The deployment of the proposed framework on
the iCub platform is schematised in Figure 4. Mainly, four big functional modules
can be distinguished: (i) the proposed framework described in this paper (blue
blocks), (ii) the real/simulated platform with its visual perception, joint sensors
and actuators (magenta blocks), (iii) the end-effectors control via the built-in
YARP Cartesian controller [16] and an ad-hoc external torso controller (green
blocks), and (iv) the HRI interface to parameterise the desired start and goal
configurations for the task, and retrieve the robot’s status (red blocks).

4.2 Learning Primitive Skills from Demonstration

For the system to succeed on the dual-arm pick-and-place of a parcel task in
novel environments, the framework’s library needs to be loaded with the ab-
solute primitive skills of (i) pick-and-place dynamics on a horizontal surface,
(ii) rotational motion around the z-axis, and (iii) obstacle avoidance. Moreover,
since the parcel has to be grasped by lateral contact of both end-effectors, the li-
brary also requires a relative skill to ensure grasp maintenance, i.e. prevention of
contact separation. All these primitive skills have been demonstrated via kineas-
thetic guiding on the real iCub humanoid robot. To this aim, all joints have been
set in gravity compensation, allowing the demonstrator to physically manoeuvre
the robot through each primitive. Figure 4(b) depicts the kineasthetic teaching
of obstacle avoidance and grasp maintenance primitives.
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(a) (b)

Fig. 4. (a) Layout of the framework deployment on the iCub robot. Note: grasping ge-
ometry (GG), primitive skill (PS). (b) iCub humanoid being taught grasp maintenance
through kineasthetic guiding.

During the demonstrations, proprioception information is retrieved via YARP
ports to learn the coupling terms fx(·) and fq(·) in (1)-(4) characterising the dif-
ferent skills. For the pick-and-place and rotational dynamics, the coupling terms
are encoded as a weighted linear combination of non-linear RBFs distributed
along the trajectory as in [9]. The obstacle avoidance is learnt by finding the
best-fitting parameters of the biologically-inspired formulation as in [17]. Finally,
the grasp maintenance skill is learnt by setting the parcel’s grasping geometry
as a pose tracking reference as in [7].

4.3 Experiments on Simulated iCub Humanoid

The evaluation of the framework on the pick-and-place setup has been con-
ducted on a simulated iCub robotic platform. Particularly, the four primitive
skills previously learnt and loaded in the framework’s library are simultaneously
and sequentially combined to conduct three consecutive dual-arm pick-and-place
task in novel environments (see Figure 5).

Given an initial random configuration laying on the table and within iCub’s
workspace (see Figure 5(a)), the first action consists of grasping the parcel. This
is achieved by retrieving the parcel’s configuration, then use the learnt parcel’s
geometry to compute the grasping points, and finally approach them laterally
via the middle-setpoints displayed as red and blue prisms for the right and left
end-effector, respectively (see Figure 5(a)-Figure 5(c)). From this stage on, the
grasp maintenance skill ensures that both end-effectors are in flat contact with
the box to avoid undesired slippage.

The following three consecutive movements require picking-and-placing the
parcel between different configurations laying on the central, right and left side of
iCub’s workspace. The former pick-and-place does not require avoiding any ob-
stacle, thus the built-in DMPs generalisation capabilities are sufficient to address
this task (see Figure 5(c)-Figure 5(d)). However, the two latter pick-and-place
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. iCub humanoid suceeding in novel dual-arm pick-and-place tasks by simultane-
ously and sequentially combining primitive skills. Demonstrated pick-and-place (green
trajectory). Framework’s response (blue trajectory). Obstacle (red sphere). (a) Par-
cel initial state. (b)-(c) Grasping parcel laterally. (d)-(f) and (f)-(h) Pick-and-place
execution with different start, goal and obstacle configurations.

tasks involve adapting the learnt dynamics to address novel scenarios. When the
obstacle (red sphere) is collinear with the start and goal positions, i.e. below
the demonstrated task (green trajectory), the iCub humanoid circumnavigates
the obstacle from the top (see Figure 5(d)-Figure 5(f)). Instead, for an obstacle
located forward the demonstration, the framework guides the system through a
collision-free trajectory near iCub’s chest (see Figure 5(g)-Figure 5(h)).

The experimental evaluation conducted with the simulated iCub humanoid
robot has demonstrated various of the aforementioned framework’s features.
Having a repertoire of primitive skills available in the framework’s library al-
lows exploiting them simultaneously and sequentially to confront complex tasks
in novel scenarios. The reported case is one of the 16 successful experiments out
of a total of 20 trials. In all cases, the robot had to accomplish the three con-
secutive dual-arm pick-and-place tasks with different start and goal locations,
while avoiding novel obstacles and ensuring grasp maintenance. Failure in any of
these tasks made the trial unsuccessful. Interestingly, in the four failed trials one
of iCub’s forearms collided with the obstacle. This is because the biologically-
inspired obstacle avoidance formulation only considers the carried object and
should be extended to the object-arm space. The flexibility of the proposed
framework could be leveraged to integrate in its library a potential field-inspired
approach for obstacle avoidance which also checks for link collisions [14].
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5 FINAL REMARKS and FUTURE WORK

This work has presented a novel end-to-end learning-based framework which en-
dows a dual-arm manipulator with real-time and generalisable manipulation ca-
pabilities. The framework is built upon the proposed extension of the DMP-based
modelisation for dual-arm systems, which considers two different frames to ref-
erence the movement generation, force interaction and constraints requirements.
Based on this arrangement, the proposed framework is twofold: (i) learns from
human demonstrations to create a library of primitive skills, and (ii) combines
such knowledge simultaneously and sequentially to confront novel scenarios.

The suitability of the proposed approach has been demonstrated in a dual-
arm pick-and-place setting, where the iCub humanoid first learnt a repertoire of
primitive skills from human demonstrations and then composed such knowledge
to successfully generalise to novel scenarios. The framework is not restricted
to the presented experimental evaluation nor platform. Any system capable of
learning from demonstrations can benefit from this work. Moreover, the frame-
work’s modularity allows loading to its library any primitive skill that might be
required for dual-arm manipulation purposes.

Future work will significantly extend the library of primitive skills such that
more challenging dual-arm manipulation behaviours can be addressed within
the framework. In this regard, imminent efforts will focus on learning force-
dependant primitive skills or other actions requiring complex synchronisation
between end-effectors, such as the opening of a bottle’s screw cap or succeeding
in the peg-in-a-hole tasks.
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