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Abstract—Reasoning about object affordances allows an au-
tonomous agent to perform generalised manipulation tasks
among object instances. While current approaches to grasp
affordance estimation are effective, they are limited to a single
hypothesis. We present an approach for detection and extraction
of multiple grasp affordances on an object via visual input. We
define semantics as a combination of multiple attributes, which
yields benefits in terms of generalisation for grasp affordance
prediction. We use Markov Logic Networks to build a knowledge
base graph representation to obtain a probability distribution
of grasp affordances for an object. To harvest the knowledge
base, we collect and make available a novel dataset that relates
different semantic attributes. We achieve reliable mappings
of the predicted grasp affordances on the object by learning
prototypical grasping patches from several examples. We show
our method’s generalisation capabilities on grasp affordance
prediction for novel instances and compare with similar methods
in the literature. Moreover, using a robotic platform, on simulated
and real scenarios, we evaluate the success of the grasping task
when conditioned on the grasp affordance prediction.

I. INTRODUCTION

Modern robotic platforms are capable of performing a rich
set of human-scale manipulation tasks. Affordance is one of
the key concepts that enables an autonomous agent to interact
with a variety of objects successfully. Affordance refers to the
possibility of performing different actions with an object [1].
By associating context and previous experiences, humans are
very effective at creating grasp affordance relations to facilitate
an intended action. For example, grasping a pair of scissors
from the tip affords handing over the tool, but not a cutting
task. In the context of robotics, grasp affordances have attained
new relevance as agents should be able to manipulate novel
objects for tasks with distinct contextualisations.

The current literature offers solutions that are successful in
real-world scenarios, but typically assign a single universal
grasp affordance for a given object no matter the context of
the scene [2]–[5]. In reality, a single object affords different
actions, and the successful accomplishment of the task is
dependant on identifying the correct grasping region of the
object. Nonetheless, in robotics, there is a relational gap be-
tween the interaction of different object categories associated
with changing scenarios and pose-grasps. The missed con-
nection between objects and grasp relationships has resulted
in (i) a tendency only to consider a single grasp affordance
per object, and (ii) a lack of datasets that take into account
the relational aspects of grasp affordance. On the grounds
of the limitations mentioned above, the contribution of our
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Fig. 1: PR2 reasoning about grasp affordances of objects on a
tabletop office scenario. The affordances are colour coded with
the corresponding grasping region on the objects. On the top
three affordance labels, the larger the size, the more suitable
that affordance is in the perceived context.

approach is threefold. First, we present an approach for multi-
target prediction of grasp affordances on an object using
Markov Logic Network (MLN) theory to build a knowledge
base (KB) graph representation. Our method is able to reason
about the most probable grasp affordance, among a set, by
inferring the context semantics relation using Gibbs sampling.
Second, to test the prediction on the grasping task, we map
the obtained grasp affordances to the three-dimensional (3-D)
data of the object. The system learns the object shape context
and related prototypical grasping patches to create hypotheses
of grasp locations. The most probable grasp affordance is then
chosen to generate a reaching and grasping configuration plan.
Finally, we collect and make available a new dataset for visual
grasp affordance prediction1 that promotes more robust and
heterogeneous robotic grasping methods. The dataset contains
different attributes from 30 different object classes. Each in-
stance is related not only to the semantic descriptions, but also
to the physical features describing visual attributes, locations,
and different grasping regions for a variety of actions.

In addition, we also compare the generalisation of the grasp
affordance predictions on novel objects against current state-
of-the-art techniques. The reliability of the obtained grasp
affordance regions is evaluated using similarity metrics. We
compare these calculated hypotheses with the ground truth
labels obtaining high correlation values. We analyse how
feasible our approach is for a general tabletop scenario, as
shown in Fig. 1, with known and novel objects in simulated
and real indoor scenes.

1Data and code: https://paolaardon.github.io/grasp_affordance_reasoning/
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Fig. 2: Proposed framework for reasoning about object grasp affordances, composed of the learning, querying and mapping
tasks. The learnt model (white box) encodes the relation between nodes with connecting coloured edges.

II. RELATED WORK

Learning visual grasp affordances for objects has been an
active area of research for robotic manipulation tasks. Ideally,
an autonomous agent should be able to distinguish between
objects and their utility. In real-world scenarios, a single object
affords different actions, and the successful completion of
the task is dependent on the correct choice of the grasping
region. The literature on visually detecting robotic graspings
is vast. The state-of-the-art in this area, [6], [7], offers robust
methodologies for identifying candidate grasps, either with
architectures based on deep learning to detect grasp areas on
an object [6], or using supervised learning to obtain grasping
points based on objects shape [7]. While these techniques
offer robust grasp candidates, they do not differentiate among
actions at those detected grasp points.

Grasp affordances: Work on grasp affordances tends to fo-
cus on robust interactions between objects and the autonomous
agent. However, it is typically limited to a single affordance
per object. Moreover, affordance labels tend to be assigned
arbitrarily instead of through data-driven techniques gathering
human judgement to portray socially acceptable interactions
regarding the grasps. Some works, such as [8], focus on
relating abstractions of sensory-motor processes with object
structures (e.g., object-action complexes (OACs)) to extract
the best reaching and grasping candidate given an object
affordance. Others use purely visual input to learn affordances
using deep learning [5], [9] or supervised learning techniques
to relate objects and actions [2]–[4], [10]–[12]. In contrast,
our approach reasons about a set of affordance possibilities
for an object using data-driven techniques to discern the best
grasping approach to succeed at a given action task.

Datasets: At present, no dataset offers an end-to-end re-
lation between objects and grasp affordances. Some datasets
relate objects with actions for affordance detection [5], [9].
Others offer a mapping of robust grasps labels for different
objects without considering the actions [13]. Not having a
dataset that brings together both concepts represents a problem
for any methodology that aims to achieve a robust social
human-robot interaction architecture for manipulation tasks.
In contrast, we harvest a dataset that includes object locations,

grasp labels and semantics as relational attributes, encouraging
more robust and heterogeneous robotic grasping methods.

Knowledge bases (KB): A knowledge base refers to a
repository of entities and rules that can be used for storing
and querying objects’ affordance information. MLNs [14]
represent the current state-of-the-art method when it comes to
reasoning about objects using knowledge bases. An MLN is
a combination of Markov Random Fields (MRF) with a first-
order logic (FOL) language. [15] uses MLN to learn the opti-
mal weights that relate different object descriptions extracted
with a ranking Support Vector Machine (SVM) function. On
the other hand, [16] trains a battery of L1-linear regularised
logistic classifiers and learn the attributes relation according
to the classification score. The performance of the KBs using
MLN has been shown to outperform alternatives [17], [18]
given the Markovian ability to relate attributes. Using MLN
in KBs is advantageous as it can incorporate the uncertainty
of probabilistic graphical models. This performance depends
on the quality and correlation of the data used for training.

In contrast to current approaches in the field, we collect
a detailed dataset that promotes robust grasp techniques. We
use this dataset to reason about an object’s multiple reliable
grasps, corresponding to actions resulting from the design of
a KB based on MLN.

III. PROPOSED METHOD

Our primary task is to reason about feasible grasps in an
object that are closely related to the success of an affordance
task. The grasp affordance relationship is built using semantics
as a collection of attributes (as explained in Section IV-A).
Fig. 2 shows a summary of our proposed methodology as
follows: (i) we learn the semantics relation between attributes,
locations and grasp affordances through a unique building
of grounding and combination of rules using MLN, (ii) we
query an approximation of the probability distribution associ-
ated with grasp affordances using Gibbs sampling [19], and
(iii) among all the possibilities, we take the one that satisfies
a given affordance with the highest probability. This selected
grasp affordance region is then located on the 3-D object data
to calculate a grasping configuration.



A. Knowledge Base Terminology

A knowledge base can be represented as a graph, similar to
the white block in Fig. 2. The nodes denote the entities and
the edges the general rules that characterise their relationship.
For example, a cup is a node or entity connected to other
nodes depicting its visual attributes, its affordance (such as
pour) and the corresponding grasping region. These entities
are connected with edges of different colours representing the
different weights. The higher the weight, the more likely that
relation is to be true. We build the KB by learning these
relations, i.e. the weights of the general rules. We employ
an MLN [14] for knowledge representation. To construct a
KB with MLN there is a pre-learning process: the first step
is to collect evidence (as detailed in Section IV-A), in the
form of a set of facts and assertions about the entities. The
different sets of assertions create possible worlds. For example,
scissors have metal blades and handles. These two assertions
create a world where objects having these two characteristics
are likely to be a pair of scissors. The second step is to create
a general set of rules. Each of these rules is a formula Mi

associated with a weight wi, thus creating correlated pairs
(Mi, wi). The formulae are built by creating a relation between
the entities. In an MLN, the entities are terms and the relation
between terms are predicates. Table I shows examples of
possible predicates and formulae in our KB. For example, the
predicate “hasShape" is a relation between the terms “object"
and “shape". All the terms, except “object", are considered
grounded terms since we know their domain representation.

B. Learning Grasp Affordance Relations

The possible worlds x that we collect (Section IV-A) are
used for learning the formulae’ weights and are translated
into FOL predicates to form formula sets M . Table I shows
some examples of allowable combinations of predicates used
in our KB. The location, category, grasping region and visual
attributes (i.e., texture, material, shape) are treated as constants
and the object as a variable. Given the different sets of con-
stants inside each term, different networks are produced. These
networks are of widely varying sizes, but all grounded terms
of each formula Mi have the same weight wi. The weights are
then learned generatively using the available possible worlds
x by calculating their joint distribution as:

P (X = x) =
1

Z
exp

( n∑
i=1

wifi(x{i})
)
, (1)

where Z is the normalisation constant over the potential
functions φi of connected nodes given by

∑
x∈X

∏
i φi(x{i}),

n is the number of formulae in M , x{i} is the state of the
grounded terms (i.e., the state of existing terms that appear
in that world) in Mi, and the feature function fi(x{i}) = 1
if Mi(x{i}) is true or 0 otherwise. The weights wi indicate
the likelihood of the formula being true. Using Broyden’s
method [19] we learn the optimal weights w∗ from maximis-
ing the pseudo-log-likelihood logP ∗w(X = x) of the obtained
probability distribution of the available worlds. Table I shows

LEARNING
Predicates Formula-weights (Mi, wi)
hS: hasShape(obj, shape)
hT: hasTexture(obj, texture) (hS ∧ hT ∧ hM⇒ hA, w1)
hM: hasMaterial(obj, material) (hS∧hT∧hM∧cF⇒ hA, w2)
cF: canBeFound(obj, location) ...
hA: hasAffordance(obj, affordance) (hC⇒ hA, wn−1)
hC: hasCategory(obj, category) (hA⇒ gR, wn )
gR: graspRegion(obj, region)

EXAMPLES
(hasCategory(obj, container)⇒ hasAffordance(obj, pour), log(0.67))

(hasCategory(obj, electronics)⇒ hasAffordance(obj, pour), log(0.07))

TABLE I: Knowledge base schema for the learning task. Our
formulae are defined as relations between predicates. The
examples give an idea of the learned relations with weights.

some examples of the learned relations (Mi, wi) in the KB.
For example, a container is ten times more likely to afford a
pouring task than an object categorised as electronic.

C. Reasoning about Grasp Affordances

To reason about an object’s grasp affordances, we use the
two-dimensional (2-D) image and pass it through a deep
learning architecture built with pre-trained Convolutional Neu-
ral Networks (CNNs) [20] to extract the objects’ attributes
(i.e., shape, texture, material, category, location) as labels.
These labels are translated into FOL to create possible worlds.
These worlds then serve to query the most feasible grasping
region for an affordance task. Table II shows an example
of probable relations between affordance and grasping region
labels (i.e., 1, 2 or 3) given a grasp affordance query. In the
KB the more formulae a world adheres to, the more probable
it is. In order to query grasp affordances from the learned
weights model, we use Gibbs sampling [21]. We employ Gibbs
sampling to generate posterior samples by sweeping through
each grounded term while keeping the calculations tractable.
We compute the expectation of a posterior distribution as:

E[h(s)]P ≈
1

n

n∑
i=1

h(s(i)), (2)

where n is the number of grounded simulated samples from
that distribution, P is the posterior distribution of the world
of interest, h(s) is the desired expectation and h(s(i)) is the
ith simulated sample from P . This inference method gives
us the maximum probability for different grasping regions for
every query q ∈ Q. The corresponding labels (see example in
Table II) are used to map the resulting grasping affordances
on the object 3-D data. Among these grasp affordances, the
most likely one is used as the optimal grasping patch label
G∗ = arg maxnE[h(s)] on which we calculate a grasping
configuration to be sent to the robot.

QUERY, given the attributes of a cup:
hasAffordance(obj, x) ∧ graspRegion(obj, x)
(hasAffordance(obj, stack) ∧ graspRegion(obj, 1), 49%)
(hasAffordance(obj, hand over) ∧ graspRegion(obj, 3), 17%)
(hasAffordance(obj, pour) ∧ graspRegion(obj, 2), 22%)

TABLE II: Example of a query and the top answers given an
object’s attributes presented as assertions that build a world.
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D. Mapping Grasp Affordance Patches

Our goal is to produce robust manipulation by reasoning
about the best possible grasp for a given affordance. Towards
this objective, we map the previously obtained grasp affor-
dance probabilities to the object’s 3-D data. We use a combina-
tion of the object shape context and hierarchical segmentation
of the point cloud. To ensure the grasping regions on the object
are reliable, we adopt as a starting point the pre-defined grasp-
ing regions from [13] (2-D with corresponding 3-D mapping)
and use them as ground truth labels. Nonetheless, after parsing
the data collected in Section IV-A, not all the ground truth
labels (colour coded labels from [13] in Fig. 3, step (1)) afford
an action or different labels could afford the same action.
Hence, we redefine sets of ground truth labels into our grasp
affordance patches. Using the ground truth data in [13], the
points are clustered using the k-means algorithm, extracting
n grasping regions (as probabilities obtained from the KB
querying step). The cluster centres µG serve as the seeds
for the representative initial patches G. A set of faces forms
these patches. The faces are grouped using hierarchical mesh
decomposition as proposed in [22]. The mesh decomposition
produces Gn grasping patches as shown in step (2) in Fig. 3.
We consider the features belonging to the Gn grasping patches
as inputs and classify them in n grasp affordance candidate
labels based on the object’s context shape using an SVM
classifier as done in [6], [7]. The optimal grasping patch label
G∗ is represented by a set b of 3-D points which have a
dominant plane Π̂ with centroid νC and orientation γ that
serves as the position and orientation for the inverse kinematics
calculation of the grasping approach (Fig. 3, step (3) and (4)).

E. End-to-end Execution

Algorithm 1 presents an outline of the framework’s end-to-
end execution, which aims to provide a robotic platform with
a feasible grasp subject to a desired affordance. Given visual
perception of the environment, the desired affordance, and the

Algorithm 1: end-to-end execution

1 Input:
2 CP: camera perception.
3 affordance: affordance choice.
4 imageToLabel: DCNN learned model.
5 regionsFromCloud: SVM learned model.
6 semanticRelation: KB learned model.
7 begin
8 2D_labels ← imageToLabels(CP.2D_image)
9 3D_region← regionsFromCloud(CP.3D_image)

10 GA_r ← semanticRelation(2D_labels)
11 region_label∗ ← selectGrasp(GA_r, affordance)
12 G∗ ← 3D_region(region_label∗)
13 Wee_pose∗ ← extractGraspPose(G∗)
14 sendToRobot(Wee_pose∗)

pre-trained models for label extraction (see Section III-C),
region extraction (see Section III-D), and semantic relations
(see Section III-B) (line 2 to 5), the end-to-end execution is
as follows. First, the visual data is processed to extract the
labels and map them into a binary vector, where the non-zero
entries indicate the presence of an attribute (line 8) and the
feature-label map (line 9) describing the object to manipulate.
The extracted labels are used to define an FOL world and
query the KB model, thus inferring a set of grasp affordance
relations GA_r (line 10). GA_r indicates the highest affordance
probability per grasping region. From this set and given the
desired affordance, the framework calculates the most suitable
region_label∗. If the affordance is not chosen, the framework
selects the affordance corresponding to the highest probability
in the set GA_r (line 11). The optimal region_label∗ is then
projected to the object 3-D data using the extracted features-
labels map 3D_region (line 12). On this optimal grasping patch
G∗ we calculate a grasping configuration Wee_pose∗ in world
coordinates (line 13) to be sent to the robot (line 14).

IV. EVALUATION ON GRASP AFFORDANCE DATASET

We evaluate our methodology on a PR2 robotic platform,
in both simulated and real-world scenarios. The 2-D data
is perceived with the robot’s left 2-D camera and the 3-D
information with a kinect mounted on its head. We use the
end-to-end execution framework as presented in Algorithm 1.

A. Data Collection

This work pursues a multi-target prediction of grasp affor-
dances on an object for which the training data needs to be di-
verse, accurate and consistent. However, when learning object
affordances for robotic grasps, one of the greatest obstacles is
the lack of datasets that offer a multi-grasp affordance relation.
Therefore, we build a new dataset with highly correlated in-
formation that encourages the creation of more robust robotic
grasping methods. We use this collected dataset to ensure the
reliability of the obtained grasp affordance regions from the
KB. We choose 30 different objects that are commonly found
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an object and location. The second row is the segmented and
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affordance predictions. The third row is one of the proposed
grasp configurations on the obtained grasp affordance region.

in online datasets used by grasping [6], [7], object recognition
[23] and object-location association methodologies [24], [25],
resulting in a prior for grasping, object category, and possible
location labels. Specifically, the pre-defined grasping regions
are taken from [13]. Nonetheless, these datasets do not relate
to each other, and the affordance relation is still unsolved.
Consequently, we design a detailed questionnaire containing
these different 30 objects with their corresponding label priors
alongside descriptions of visual and categorical attributes, as
suggested in [16], as well as possible affordances and indoor
locations. This questionnaire was presented to a total number
of 1,269 subjects. The collected data led to the creation of
a total of 3,280 possible worlds that were used in training
and testing. These possible worlds were composed of three
visual attributes, each with at least four possible values, eight
possible object categories (i.e., the 30 objects organised as
food, electronics and others), seven possible indoor locations
(such as kitchen, office and others) and fourteen possible
affordable actions closely related to at least three possible
grasping regions.

B. Baselines for Grasp Affordances Evaluation

As explained in Algorithm 1, our method is able to evaluate
different sets of grasps and select the one that will max-
imise the success of an affordance. For the following set
of experiments, we query the KB not only for the grasp
region but also for the affordance prediction, as the query
shown in Table II, to perform a complete evaluation. First, we
extract the attributes that build the KB queries for inference.
We use 30% of the objects for testing. These objects are
semantically similar to the 70% of objects used for training.
To predict their affordances, we take ten images per object
in different environments. Given a 2-D image we extract the
scene location, visual and categorical attributes describing the
object using a deep CNN. Second, we collect the scores
from the binary vector (i.e. non-zero entries). Finally, these
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Fig. 5: Hausdorff distance example between two grasp regions
on a stapler image from [13]. The grasp affordance rectangle
is shown in blue while the ground truth labels are in yellow.
The less similar the sets the higher the dh value.

attributes are translated into relational worlds using FOL and
input in the KB where we query the grasp affordance regions.
Fig. 4 shows examples of the images taken for the grasp
affordance prediction. The first row contains the 2-D image
of the environment with the object. The second row depicts
the relevant 3-D data on the extracted shape context with the
top three highest grasp affordance probabilities, and the third
row is the resulting grasp configuration on G∗.

C. Metrics for Grasp Affordances Regions

To establish the reliability of our grasp affordance regions,
we evaluate the obtained patches against the adopted grasping
labels from [13]. In [13], the label is a rectangle that covers the
grasping area with the corresponding 2-D and 3-D mappings.
We choose four instances per object belonging to the 30% of
the testing data from [13] and simulated to be in an office
environment. On the 2-D data, we project the ground truth
and our grasp affordance regions are enclosed in rectangles.
Methods that have used the same database to extract the grasp-
ing labels [6], [7] have based their evaluation on measuring
the Euclidean distance between rectangle centroids. As we
generalise a segment of an object as a grasping patch, these
metrics might overestimate the performance of the algorithm
(if one ground truth rectangle is inside a large obtained grasp
affordance rectangle), or underestimate it (if the obtained grasp
affordance region does not intersect but is close). Thus, we
use the Hausdorff distance as a metric of choice to establish
the similarity between the two projected rectangles set. The
Hausdorff distance is the maximum of all distances from a
point in one set A to the closest point in another set B, the
smaller the value, the more similar the sets are, i.e.:

dh(A,B) = max
a∈A

(min
b∈B

d(a, b)), (3)

where a and b are points in sets A and B respectively, and
d(a, b) is the Euclidean distance between a and b. Fig. 5 shows
how the Hausdorff distance accurately measures the similarity
between rectangle patches, although they do not intersect.

V. EXPERIMENTS AND DISCUSSION

The goal of this work is to reason about the feasible grasps
for an object given an affordance. Thus it is important to (i) test
the accuracy of grasp affordance prediction, and (ii) test the
reliability of the grasps in changing scenarios2.

2More experiments can be found in https://youtu.be/aaA3NA-S5KY.

https://youtu.be/aaA3NA-S5KY


boxes

books

staplers …

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

+1

-1 hammer

clip

shape

read
hand over

pour

squeeze

cut

+1

-1

hand over

clip

contain

shape

write
pour

screw
squeeze

+1

-1

hand over

clip
contain

write

pour

hammer
shake

cut

(a) Cubic-like objects

dispensers

mugs

bottles…

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

+1

-1

hand over

contain
shape

stack

clean

hammer

shake

+1

-1

hand over

contain
shape

pour
stack

shake

squeeze

+1

-1

pour

stack

hand over

squeeze

shake

(b) Cylindrical-like objects

screwdrivers

scissors

spatulas…

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

+1

-1

clip

hand over

shape
stack

screwcut
+1

-1

clip

contain
read

hand over

clean

+1

-1

contain
pour

stack

hand over

squeeze

(c) Irregular-like objects

lightbulbs

bowls

plates…

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

+1

-1

hand over

squeeze

shape
pour

stack

screwshake

+1

-1

hand over
contain

pour

screw

squeeze

shake

+1

-1

hand over

pour

screw
stack

shake

(d) Spherical-like objects

Fig. 6: Visualisation of the normalised grasp affordance likelihood learned in Section III-B subject to objects’ shape context
((a)-(d)) and grasp regions (colour coded arrows with corresponding regions on the objects). The more positive the weight, the
more likely that region offers a feasible grasp for the indicated affordance. We include the likelihoods close to the extremes.

A. Zero-Shot Grasp Affordance

Our first evaluation tests the performance of the KB on
unseen scenarios. In contrast to [15], our feature extraction
approach is a deep CNN architecture that extracts the objects
attributes. We use eight objects semantically similar to the ones
used in training, as explained in Section IV-B. We evaluate
the performance of our proposed KB against three state-of-
the-art reasoning methodologies: (i) a KB built with a series
of L1-regularised logistic classifiers [16], (ii) our KB based on
decision trees [18] and, (iii) the KB based on MLN proposed
in [15] with their SVM ranking function for feature extraction.
Table III shows the mean area under the curve (AUC) under
the Receiver Operating Characteristics (ROC) curve over all
the possible grasp affordances. The results show that our
method has the best performance of all methods tested since
we train our KB over a combination of highly correlated
object predicates and relevant constant terms. Additionally,
we note the improved performance of KBs that use MLN
over the ones trained with a battery of classifiers. By using
MLN, the attributes build relationships regarding object grasp
affordances that the classifiers fail to incorporate.

B. Grasp Affordances Relation

Our primary contribution is to associate a set of grasp
affordances with an object. Fig. 6 portrays possible grasp
affordances for objects in different shape contexts across
different indoor scenes. The three arrows represent the three
grasping regions across different objects with more affordance
possibilities. The regions are colour coded on the correspond-
ing area of the different objects. The affordances are sorted by
the normalised weights between -1 to +1 per grasping region,
where the higher the weight, the more likely that affordance
is to be successful when grasping the object using the colour

coded grasping region. We group the objects by shape context
for a clearer grasp affordance representation. Out of the 14
possible affordances, we extracted those with higher and lower
relational weight. Among the different grasp affordances, one
of the most probable ones across shape contexts is object hand
over. Specifically, this is the case for objects that are used
as tools and are recognised with an irregular shape (Fig. 6c).
Because the KB has learned from data collected from humans,
it reflects the likelihood of that grasp affordance region to be
more or less “acceptable" than others for a particular action.
Also in Fig. 6c, the likelihood of success at handing over the
objects from the grasp region indicated in blue (i.e., object
handles) is higher than the other two. The same case is shown
in Fig. 6a and Fig. 6b for stack. Moreover, Fig. 7 illustrates
some of the grasp affordance feature patches of the hand over,
stack and pour affordances learned with our method. These
patches (specifically red areas) correspond to graspable regions
of objects such as handles or other raised regions.

C. Grasp Affordance Selection Reliability

We demonstrate the reliability of our grasp affordance
hypothesis by (i) evaluating the accuracy of the affordance
detection, and (ii) checking if the obtained grasping regions
correspond to stable grasps using Hausdorff distance. We

Approach Performances per attribute (AUC)
visual categorical all+location

L1-LR [16] 0.70 0.74 0.77
SVM KB [15] 0.73 0.77 0.82
our previous KB [18] 0.72 0.75 0.79
our KB 0.75 0.79 0.84

TABLE III: Performance of Zero-Shot grasp-affordance pre-
diction for different attributes and their combination.
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Fig. 7: Examples of learned grasp affordance patch features
of affordances such as hand over, stack and pour.

train two state-of-the-art methods, using deep learning CNN
methodologies, with our dataset and evaluate separately (i) and
(ii) given that the current literature does not treat the grasp
affordance as a unified task.

1) Affordance Detection: We compare our affordance de-
tection with [5] (Detection (%) in Table IV). We use a total
of 64 images of 16 object classes in different environments,
among which the eight used for zero-shot prediction are
included. Our method shows a higher performance, by using
MLN, since we build a series of relationships around an
object (worlds) that traditional machine learning methods fail
to connect. Namely, [5] does not consider the task given a
context. Instead, it learns object part labels and categories to
assign an affordance. Fig. 9a shows an example of a knife
grasp affordance detection. The knife affords equally two tasks
when using [5], while the affordances are correct (cut and hand
over), when grasping, determining one task is essential.

2) Similarity between patches: First, we check the simi-
larity between our regions and the original ones from [13].
We use the subset of 32 images (Section IV-C) to project
the ground truth and our obtained areas. Fig. 8 shows the
Hausdorff distance, dh between the obtained hypotheses, set
A, and the ground truth labels, set B, grouped by shape context
and grasping regions. The dh mean per grasp affordance region
are below 0.1 for all the objects. Specifically, a low dh is
obtained for rectangles that are nearby (dh ≤ 0.1) while
larger values might be obtained by far apart sets (dh ≥ 0.4)
(Section IV-C). Second, we compare our method with [6]
which finds multiple reliable grasping regions on the data
in [13]. We use the subset of 64 images and compare the
Hausdorff distance. Table IV shows that both methods achieve
considerably small and similar dh, thus learning stable grasp-
ing patches. Examples of grasping patches obtained with both
methods, ours and [6], are shown in Fig. 9a.

D. Grasp Affordance on a Robotic Platform

To explore the generalisability and effect of the robot on
the success rate of our method, we ran an extensive number
of experiments on both a simulated and real PR2 robotic
platform. We tested our method in three different indoor
scenarios: a kitchen and dining room setting in simulation
and a real office environment. For this experiment, we use the
previously selected 16 different object classes, among which
we assess robustness by variating instances, and try the affor-
dance detection and grasping task 25 times per object class
for a total of 400 evaluations. The performance of the grasp

cubic irregular cylindrical spherical
0
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)
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Fig. 8: Hausdorff distance to measure the similarity between
ground truth regions and our grasp affordances.

affordance task is detailed in Table IV (On the robot (%)).
We average the grasp affordance prediction with the actual
grasping action success on the correct detection cases (avg in
Table IV). The grasp is considered successful if: (i) the gripper
approaches the grasp affordance region of the object below a
Hausdorff distance threshold (dh < 0.2), and (ii) if the object
is successfully grasped. The lowest performance is obtained by
objects with irregular shape context where the most significant
setback is the success of the grasping action given that, in
general, the set of objects were too small for the PR2 gripper;
thus they frequently slip. Fig. 9b-9d illustrate the experimental
set-up for the three different scenarios, focusing on the grasp
affordances of a mug. Interestingly, the affordances detected
on the object in the three locations are different. In two out
of the three scenarios, dining room and office, the grasping
region coincides even though the affordances are different.
The method relates the location with object semantics to
decide on a grasp affordance that will potentially ensure the
accomplishment of an action. Given that the KB learned from
our collected data, it reflects what is socially “acceptable" in
an environment. Although the grasping region for the mug is
the same in the dining room and the office, in the office it is
more likely hand over the mug than to pour liquids from it.

VI. CONCLUSIONS AND FUTURE WORK

We presented a new method for reasoning about the dif-
ferent grasp affordances of an object. In contrast to state-of-
the-art techniques, instead of hand-defining the grasp affor-
dance labels on the objects, we collected data from 1,269
different participants to obtain their input on the relation
of object attributes, locations and grasp affordance labels.
Using this collected data, our approach not only learns grasp
affordances but also learns to characterise socially acceptable
grasp behaviours on different objects in various scenarios. The
information included in this dataset opens doors in the research
community towards more robust and heterogeneous robotic

Objects
shape

Detection (%) dh On the robot (%)
[5] ours [6] ours detection/grasp avg

Cubic 82.7 88.5 0.05 0.01 90.3 / 100 95.2
Cylindrical 79.6 87.4 0.01 0.03 87.1 / 96.1 91.6
Irregular 77.8 88.6 0.09 0.12 87.9 / 77.3 82.6
Spherical 83.2 90.5 0.02 0.03 91.6 / 100 95.8

TABLE IV: Comparison with state-of-the-art methods and
grasp affordance performance of the robotic platform.
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Fig. 9: (a) Comparison of our method with state-of-the-art alternatives [5], [6], and (b)-(d) our method running in PR2 to grasp
an object in different simulated and real-world scenarios while checking the variations on the detected grasp affordances.

grasping methods. The proposed method also outperforms al-
ternative grasp affordance recognition techniques. We attribute
this performance to our structures for grounding and relating
data. Our method is able to (i) reason about the most probable
grasp affordance, among a set, by inferring the contextual
semantics relation, and (ii) map the optimal grasp affordance
to the 3-D data of the object and proceed with the grasp
using a robotic manipulator. Moreover, this work encourages
interesting future studies such as the prediction of action prob-
abilities to be executed by associating objects in the scene, the
evaluation of the generalisability of our method with different
manipulators, and the assessment of end-state comfort-effect
for grasping in human-robot collaboration tasks.

REFERENCES

[1] J. Gibson, “The theory of affordances,” in Perceiving, Acting, and
Knowing: Toward and Ecological Psychology (R. Shaw and J. Bransford,
eds.), pp. 62–82, Hillsdale, NJ: Erlbaum, 1977.

[2] L. Montesano and M. Lopes, “Learning grasping affordances from local
visual descriptors,” in Development and Learning, 2009. ICDL 2009.
IEEE 8th International Conference on, pp. 1–6, IEEE, 2009.

[3] J. Bonaiuto and M. A. Arbib, “Learning to grasp and extract affordances:
the Integrated Learning of Grasps and Affordances (ILGA) model,”
Biological cybernetics, vol. 109, no. 6, pp. 639–669, 2015.

[4] S. Hart, P. Dinh, and K. A. Hambuchen, “The affordance template
ros package for robot task programming,” 2015 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6227–6234, 2015.

[5] T.-T. Do, A. Nguyen, and I. Reid, “Affordancenet: An end-to-end deep
learning approach for object affordance detection,” in International
Conference on Robotics and Automation (ICRA), 2018.

[6] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” International Journal of Robotics Research, vol. 34, no. 4-5,
pp. 705–724, 2015.

[7] J. Bohg and D. Kragic, “Learning grasping points with shape context,”
Robotics and Autonomous Systems, vol. 58, no. 4, pp. 362–377, 2010.

[8] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,
A. Ude, T. Asfour, D. Kraft, D. Omrčen, et al., “Object–action com-
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