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Abstract

Learning and Generalisation of Primitive Skills for

Robust Dual-arm Manipulation

by Èric Pairet

Robots are becoming a vital ingredient in society. Some of their daily tasks require dual-arm
manipulation skills in the rapidly changing, dynamic and unpredictable real-world environments
where they have to operate. Given the expertise of humans in conducting these activities, it is
natural to study humans motions to use the resulting knowledge in robotic control. With this
in mind, this work leverages human knowledge to formulate a more general, real-time, and less
task-specific framework for dual-arm manipulation. Particularly, the proposed architecture first
learns the dynamics underlying the execution of different primitive skills. These are harvested
in a one-at-a-time fashion from human demonstrations, making dual-arm systems accessible
to non-roboticists-experts. Then, the framework exploits such knowledge simultaneously and
sequentially to confront complex and novel scenarios.

Current works in the literature deal with the challenges arising from particular dual-arm appli-
cations in controlled environments. Thus, the novelty of this work lies in (i) learning a set of
primitive skills in a one-at-a-time fashion, and (ii) endowing dual-arm systems with the abil-
ity to reuse their knowledge according to the requirements of any commanded task, as well as
the surrounding environment. The potential of the proposed framework is demonstrated with
several experiments involving synthetic environments, the simulated and real iCub humanoid
robot. Apart from evaluating the performance and generalisation capabilities of the different
primitive skills, the framework as a whole is tested with a dual-arm pick-and-place task of a
parcel in the presence of unexpected obstacles. Results suggest the suitability of the method
towards robust and generalisable dual-arm manipulation.
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Chapter 1

Introduction

The last decades have witnessed a drastic increase in the use of robots in industry, professional

and domestic environments. Among the countless competences that robots have acquired, some

of the most outstanding are automating repetitive and exhausting tasks in manufacturing plants,

working in hazardous scenarios unreachable to humans, assisting doctors in challenging surgical

operations, and taking responsibility for household chores. In the achievement of these promising

capabilities, biologically-inspiring the design of the morphological and behavioural aspects of

robots has played a significant role [Pfeifer et al., 2007].

1.1 Context

In an attempt to confer robots with more human-like capabilities, dual-arm anthropomorphic

manipulation has become an important research topic in the robotics community [Smith et al.,

2012]. Bi-manual arrangements extend the systems competences to efficiently perform tasks

that involve manipulating large objects and ensemble multi-component elements without the

need for external assistance. All these tasks require an accurate synchronisation between arms

to avoid breaking or exposing the handled object to stress.

Traditional approaches, such as control and planning-based methods, governing these dual-

arm systems depend upon an excellent understanding of the model underlying the systems

behaviour [Smith et al., 2012]. Even though deriving an accurate model is possible for some

complex systems, approximations are commonly used to make the calculations computationally

tractable, despite the trade-off of the models uncertainty [Pairet et al., 2018]. Furthermore,

some of these methods lack scalability and generalisation capabilities along and across tasks:

1
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hand-defining all possible scenarios, movements, behaviours, and extensive manual tuning of the

systems control architecture might be required [Billard et al., 2008]. Therefore, they need an

expert programmer and usually involve high computational resources [Argall et al., 2009].

The growth of artificial intelligence (AI) has popularised more natural techniques for robot learn-

ing, reducing the laborious task of coding every possible scenario and thus, increasing modularity

and flexibility on the systems. This allows non-robotics-experts to interact, teach and modify the

robots behaviours [Nicolescu and Mataric, 2003], and, consequently, to obtain more human-like

behaviours with enhanced acceptability and compatibility to the human workspaces [Ajoudani

et al., 2017]. In an attempt for these systems to work in a more human-like manner, they are

expected to learn from (and as) humans, especially when learning motions, i.e. the kinematics,

dynamics and constraints describing a task.

In the recent years, adopting human knowledge for the robot control has shown an incredible

performance in a wide range of robotic tasks. Despite the encouraging possibilities offered by

the learning realm, teaching complex systems, such as dual-arm manipulators, to respond and

adapt to a broad case of scenarios is yet an unsolved challenge.

1.2 Motivation

Given the expertise and dexterity of humans in using both arms for manipulation purposes, it

is natural to study humans motions to use the resulting knowledge in robotic control. In this

context, imitation learning or learning by demonstration (LbD) has shown to be a promising

alternative to let robots learn from human demonstrations [Argall et al., 2009]. LbD is a super-

vised learning-based technique which allows transferring knowledge from a human expert to a

machine, rather than manually programming the desired behaviour.

Teaching a robot from human demonstrations can be challenging. The different anatomical

characteristics between the teacher and the learner produce the correspondence problem, i.e.

the issue of identifying a mapping between the teacher and the learner which allows transferring

of information from one to the other [Dautenhahn and Nehaniv, 2002]. Moreover, complex

motions involve a mixture of human intentions, which are difficult to learn when following an

all-at-once learning baseline [Bajcsy et al., 2018]. On top of that, teaching a dual-arm system

can suppose a high endeavour for non-robotics-experts [Akgun et al., 2012].

Learning by demonstration offers some generalisation capabilities, yet limited to similar scenarios

as the demonstrated one [Billard et al., 2008]. This restriction is not realistic to the rapidly
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changing, dynamic and unpredictable environments where robots have to operate. Extended

robustness can be obtained by letting the system to improve and adapt the learnt task to new

scenarios iteratively [Guenter et al., 2007]. This leads to the well-known exploration-exploitation

dilemma and comes at the cost of needing to fail to learn and consequently, at the risk of causing

harm to the robot during the self-learning process [Pairet and Broz, 2018].

The recent trend on imitation learning has taken inspiration from the behavioural and neurosci-

entific processes of animal imitation [Pastor et al., 2009]. This paper presents a neurobiologically-

inspired framework that seeks to jointly overcome the aforementioned issues, namely (i) the

complex and ambiguous teaching procedures and (ii) the limited generalisation capabilities.

1.3 Objectives and Scope

The main goal of this thesis is to develop a framework which endows a dual-arm system with a

more general and less task-specific method for real-time and robust manipulation in unfamiliar

environments. The proposed framework (i) leverages human knowledge to create a library of

primitive skills, which are learnt one-at-a-time from human demonstrations, and (ii) endows

dual-arm systems with human-like manipulation capabilities by combining (sequentially and

simultaneously) the primitive skills. Thus, during this dissertation, the objectives are:

• Give an overview and discuss the state-of-the-art on learning-based algorithms and frame-

works which endow a system with generalisable manipulation skills (see Chapter 2).

• Analyse the requirements arising from this work’s objective and model the system, so it

meets the learning, modularity and dual-arm compatibility requisites (see Chapter 3).

• Establish the fundamentals to learn different primitive skills, such as goal-oriented (posi-

tion and orientation), obstacle avoidance and force interaction purposes (see Chapter 4).

• Formulate a high-level framework manager which integrates the previously designed com-

ponents while taking into account the requirements of a dual-arm system (see Chapter 5).

In the scope of this thesis, the potential of the proposed framework is demonstrated with a set of

experiments involving synthetic environments, the simulated and real iCub humanoid robot. The

showcase is a dual-arm pick-and-place task of a parcel in the presence of unexpected obstacles.

This experimental evaluation and its required setup are detailed in Chapter 6. The modularity

of the proposal allows exploiting objects and environmental semantic features to broaden its

generalisation capabilities in front of a wide variety of scenarios. Although this feature remains

out of this thesis scope, it is an interesting direction for future work (see Chapter 7).
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1.4 Research Impact

The main contribution of this work is the formulation of a framework which (i) learns primi-

tive skills from human demonstrations in a one-at-a-time fashion, thus easing the complexity

and ambiguity involved in the human-robot teaching procedures, and (ii) exploits the acquired

knowledge for robust and generalisable dual-arm manipulation purposes in novel environments.

Such an architecture extends the capabilities of the method presented in [Pastor et al., 2009]

to handle the requirements of a dual-arm system. This leads to a framework which reuses its

knowledge to generalise its behaviour accordingly the environment awareness, differently from

the current state-of-the-art architectures for dual-arm manipulation which are limited to the

highly controlled industrial environments [Topp, 2017; Zöllner et al., 2004].

Alongside the novelty of the proposed framework, this work also contributes to the field of learn-

ing coupling terms for obstacle avoidance. This skill initially proposed for single-arm manipula-

tion in [Hoffmann et al., 2009] and later improved in [Rai et al., 2014, 2017], is further enhanced

by (i) reformulating it as a bell-shaped function to address its dead zone issue, (ii) learning its

behaviour from human demonstrations, and (iii) using it in the dual-arm context.



Chapter 2

Related Work

Strategies which let robots autonomously perform a wide range of tasks in unstructured environ-

ments have always been of great interest in the robotics community. State-of-the-art techniques

aiming to endow robots with these capabilities have mainly been presented under the pure con-

trol theory [Bristow et al., 2006a; Nguyen-Tuong and Peters, 2011; Schaal and Atkeson, 2010]

and the learning realm [Argall et al., 2009; Goodrich and Schultz, 2007; Kober et al., 2013;

Taylor and Stone, 2009]. Alternatively, a growing area of research exploits the advantages of

hybrid learning techniques. An extensive review of this field called apprenticeship learning is

under preparation as result of this year’s research [Pairet and Broz, 2018] (see Appendix A).

Avoiding to repeat such a generic an extensive state-of-the-art review, this chapter exclusively

presents those works in the literature which are strongly relevant to the contributions of this

manuscript: (i) techniques which adjust a learnt motion to overcome unexpected obstacles in

the trajectory, and (ii) frameworks which re-use, combine, and/or sequentially exploit a set of

primitive skills to create complex behaviours. For the sake of completeness, this review considers

not only dual-arm systems but also remarkable works involving single-arm manipulators. A final

discussion wraps up the pros and cons of all overviewed methods from the literature.

2.1 Motion Adaptation Against Obstacles

In the learning realm, input datasets are considered to be exemplary demonstrations of the

desired behaviour. The reality, however, is that datasets might show poor robot-human corre-

spondence, suboptimal performance, ambiguous examples, or lack the actions to take in certain

states [Argall et al., 2009]. For that reason, being able to adapt the learnt behaviour to overcome

5
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these issues is critical. This section focuses on the state-of-the-art works that shape motions in a

new environment, particularly in the presence of unexpected obstacles. Three main approaches

are identified: (i) reward executions, (ii) advise actions, and (iii) adapt online.

The strategy behind rewarding the executed motions lies in using reinforcement learning (RL)

algorithms to explore in the parameter space a set of weights that minimise a user-defined reward

function. As discussed in [Pairet and Broz, 2018], such an approach needs many iterations to

converge to a successful motion. Thus, its use has been primarily for enhancing suboptimal

demonstrations. Guenter et al. needed approximately 3,000 iterations to successfully reshape the

parameters of an initially learnt policy for a 4 degrees of freedom (DoFs) arm. The manipulator

had to grasp objects in arbitrary positions and put them into a box, even with the presence

of unseen obstacles in the middle of the demonstrated trajectories [Guenter et al., 2007]. This

approach’s limitation is that each new scenario involves retraining the model from the base.

Alternatively, the system can be advised on how to proceed in unfamiliar scenarios. One option

is using iterative learning control (ILC), which imitates the ability of humans to quickly re-adapt

to new situations. ILC consists in feed-forwarding the committed error in the current trial into

the next one [Norrlof, 2002]. Bristow et al. reviews the many ILC-based works that have

succeeded re-adapting motions. However, it also states that first ILC iterations still involve a

significant error, and this cannot be afforded in many real-world robotics applications [Bristow

et al., 2006b]. Thus, a natural alternative which does not require to iterate is providing the

system with more demonstrations. Stulp et al. provided a total of 55 demonstrations to obtain

a probabilistic representation of a pick-and-place task over an obstacle of varying height [Stulp

et al., 2013]. Even though the performance of this procedure is exemplary, providing such an

amount of demonstrations is usually extremely time-consuming.

The last strategy to adapt motions to new scenarios is doing it in real-time. Online motion

adaptation has been extensively studied in motion planning. In this field, Khatib presented the

well-known potential fields [Khatib, 1986], later reformulated in [Park et al., 2008] to adjust

the output behaviour accordingly to the relative agent-obstacle velocity and heading. This

dynamic approach became an excellent source of inspiration for the biologically-inspired obstacle

avoidance formulated in [Fajen and Warren, 2003], which makes a robot steer around an obstacle

in the same manner as humans do. This strategy was later validated in a pick-and-place task in

the presence of obstacles using a single-arm setup [Hoffmann et al., 2009; Rai et al., 2014, 2017].

Analogously to potential fields, this analytical approach emulates the modelling of obstacles as

sources of repulsive forces, but without the curse of local minima and the high computational

expenses. On the downside, its modelling capabilities are limited to point-like obstacles.
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2.2 Frameworks for Generalisable Manipulation

Endowing robots with the ability of adapting to novel scenarios is essential. However, it is equally

important to provide them with the capability of grasping, holding, moving and rotating an

object, among others. This lets robots to use this knowledge to perform a wide range of tasks

in less structured environments. To this aim, the past years have seen a growing interest in

developing learning-based frameworks. These architectures are usually end-to-end applications,

which deal with the acquisition of data from human demonstrations, learn from such data, and

exploit such knowledge to carry out the commanded task.

Zöllner et al. presented a framework which learns from human demonstrations the sequence

of actions composing a task involving dual-arm manipulation. After classifying the movement

as coordinated (symmetric or asymmetric) or uncoordinated, the framework encodes the set of

observed actions in a high-level using Petri Nets [Zöllner et al., 2004]. The idea of sequencing

primitive actions to obtain complex behaviours was also exploited to combine manipulation and

grasping requirements within the same task [Felip et al., 2013; Lioutikov et al., 2016]. Such an

approach lets a robot to re-use the primitive actions across different tasks.

The complexity of a task can also be given by the uncertainty and high dynamism of the

environment. To cope with this challenge, some works get inspiration from the neuroscientific

belief of a vast repertoire of actions being the basis of any complex human task [Montesano

et al., 2008]. As an example, Pastor et al. proposed to consider different primitive motions

at the same time. They exemplified this idea with a single-arm pick-and-place task which

had to overcome unexpected obstacles. To this aim, their architecture was endowed with two

primitives: the pick-and-place dynamics and an obstacle avoidance behaviour. In execution

time, both primitive skills were accordingly merged [Pastor et al., 2009].

Indifferently of the usage of primitive motions, either for sequencing or combining them at the

same time, they need to be smartly chosen to confront a specific task. Industrial applications

usually attach a semantic meaning on the previously demonstrated primitive skills so an end-user

can easily reprogram a robot [Makris et al., 2014; Stenmark et al., 2018; Topp, 2017]. However,

such an approach is not doable to equip humanoid robots with autonomous manipulation ca-

pabilities. Instead, given a description of the task, surrounding environment and affordances of

the object to manipulate, a high-level manager can select and trigger the required primitives

among the ones available in the library.
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2.3 Discussion

There are different learning-based works in the literature which aim to endow a system with

robust manipulation skills. They tackle this challenge at different levels, from the particular

case where an obstacle needs to be avoided (see Section 2.1) to more generic manipulation

scenarios where multiple skills are required (see Section 2.2). Both areas of research suffer from

a critical lack of datasets, standardised metrics and scenarios, difficulting a comparison across

methods [Grunwald et al., 2008]. This fact makes it hard to analyse the pros and cons of the

different approaches quantitatively. Instead, the essence of them is discussed next.

Iterative methods have been extensively used to adapt motions to undemonstrated scenarios,

such as the presence of unexpected obstacles. In this fashion, techniques such as RL and ILC

use a user-defined reward function to guide the exploration of actions which make the system

successful on a particular task. Despite the generalisation capabilities of these techniques, shap-

ing the reward function is not always obvious, and many iterations are needed to converge to

successful behaviours. Trials before convergence risk the integrity of the robot due to the un-

predictability during the self-learning process. Such a procedure needs to be repeated if the

scenario changes since iterative methods cannot reuse knowledge across tasks. Against all these

limitations, adapting motions online using a repertoire of primitive skills seems to be a viable

alternative to empower robots with human-like manipulation skills.

Most successful learning-based frameworks which handle the manipulation requirements in un-

certain and unconstrained environments have been built on top of the online motion adaptation

concept. They not only exploit different primitive skills at the same time but also concatenate

them sequentially to produce complex and composed behaviours. To the best of the author’s

knowledge, such a strategy has not been extended to the requirements of dual-arm manipula-

tors. Instead, the existing frameworks for dual-arm systems are limited to the highly controlled

industrial environments and focus on including an end-user within the framework’s loop to cus-

tomise the system’s behaviour. Halfway between these two approaches is where the novelty of

the proposed framework lies: a unified learning-based and modular framework for robust dual-

arm manipulation yet customisable by end-users. The strategic formulation of the architecture

based on composable primitive skills (i) reduces the complexity of the demonstration process by

teaching each skill in a one-at-a-time fashion and (ii) offers generalisation to novel scenarios.



Chapter 3

System Requisites and Modelisation

This thesis pursues an end-to-end learning-based framework that allows real-time autonomous

dual-arm manipulation in unfamiliar environments. To this aim, the architecture needs to meet

the following requirements: (i) to be able to adapt its plan to achieve a task according to the

surrounding environment, while ensuring full synchronisation between both end-effectors, and

(ii) to be easily programmable, making a dual-arm platform customizable and accessible even to

non-robotics-experts. Bearing these problem requirements in mind, this chapter firstly analyses

the challenges that arise when learning actions from human demonstrations. It then describes

the typology and diversity of possible actions in a dual-arm system. Finally, this chapter puts

the previous pieces together to formulate the modelisation of a dual-arm system and its grasping.

3.1 Learning for a Dual-arm Manipulator

Learning by demonstration (LbD) provides a large set of recording techniques and mathematical

supports for encoding a demonstrated skill. However, learning a particular task from human

demonstrations raises some challenges, namely (i) clearly understanding the intentions of a

demonstration and (ii) establishing a teacher-learner communication channel. Both issues can

drastically affect the learning outcome if they are not well adressed [Argall et al., 2009].

The demonstration clarity issue is tackled by leveraging the belief of a vast repertoire of prim-

itive skills being the basis of any complex behaviour. With this in mind, this work avoids

demonstrating a task itself but, instead, teaches the robot the involved primitive skills. This

task factorisation provides similar benefits as the work in [Bajcsy et al., 2018]: it allows the user

to show one feature of the task at a time, and, if required, to correct them individually.

9
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Factorising a complex behaviour into primitive actions reduces the number of DoF to focus on

during demonstration time. As an example, the desired position and orientation of a task can

be encoded in separate primitive skills and thus, demonstrated one-at-a-time. This fact becomes

handy to ease the complicated process of teaching a dual-arm system [Akgun et al., 2012]. This

work employs kinesthetic guiding to establish a teacher-learner communication channel which

does not suffer from the correspondence problem.

3.2 Dual-arm Primitive Skills Taxonomy

Skills for single-arm manipulation have been well analysed in the robotics community. While

some of this knowledge can be extrapolated to dual-arm manipulators, the complexity of these

systems requires close attention to their control actions [Grunwald et al., 2008]. This work

builds upon the belief in [Montesano et al., 2008], which states that any complex behaviour is

composed of a vast repertoire of actions or primitive skills. Then, in the context of manipulation

via a dual-arm system, a possible classification of any primitive skill falls into these two groups:

• Absolute skills Sa: imply a change of configuration of the manipulated object in the

Cartesian space. Example: move, place or turn an object in a particular manner.

• Relative skills Sr: exert an action on the manipulated object in the object space. Example:

the opening of a bottle’s screw cap, or hold a parcel employing force contact.

Each type of primitive skill uniquely produces movement in its space. In other words, the

absolute and relative skills lie in orthogonal spaces. It is natural to expect from a dual-arm

system to simultaneously carry out, at least, one absolute and one relative skill to accomplish a

task. Let us analyse the task of moving a bottle to a particular position while opening its screw

cap. Both end-effectors synchronously move to reach the desired configuration (absolute skill).

At the same time, the left end-effector is constrained to hold the bottle upright (relative skill),

while the right end-effector unscrews the cap (relative skill).

3.3 Dual-arm System Modelisation

Given the variety of primitive skills that a dual-arm system can execute, this work seeks to

model the robotic platform in a generalisable yet modular fashion, which accounts for both

absolute and relative skills. To this aim, let us consider the closed kinematic chain depicted

in Figure 3.1 operating in a three-dimensional (3D) workspace W = R3 × SO(3). Each arm i,

where i = {L, R}, interacts with the same object O. In this context, the absolute skill explains
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the movement of the object O in the workspace W, while the relative skill describes the actions

of each end-effector i with respect to the object’s reference frame {O}. Note that {O} is the

centre of the closed-chain dual-arm system. Thus, the remaining of this manuscript uses this

notation as the object’s and the system’s frame indistinguishably.

Figure 3.1: Dual-arm manipulator modelled as a closed-chain system. Its dynamics are approx-
imated to those of a spring-damper system actuating in the Cartesian space.

The state of a closed-chain dual-arm system can be described by the position/orientation, lin-

ear/angular velocities and accelerations of {O}. These variables are subjected to the positional

and orientational system’s dynamics. As illustrated in Figure 3.1, this work approximates such

dynamics to the ones of a spring-damper system acting between the objects’s frame {O} and

its goal configuration go, which accounts for a desired goal position gox and orientation goq .

3.3.1 Positional Dynamics

Let the current positional state of the closed-chain dual-arm system be defined by the position,

linear velocity and acceleration of its frame {O} in each dimension N = 3 of the workspace

W, i.e. (xo, ẋo, ẍo)n ∀ n ∈ [1, N ]. The positional dynamics of the spring-damper system are

individually described in each dimension by the following set of nonlinear differential equations:

τ żo = αx(βx(go − xo)− zo), (3.1)

τ ẋo = zo, (3.2)

where τ is a scaling factor for time, zo and żo respectively are the scaled velocity and accelaration,

αx and βx are constants defining the positional system’s dynamics, and gox is the model’s attrac-

tor gox in the n-dimension. The system will converge to gox with critically damped dynamics

and null velocity when τ > 0, αx > 0, βx > 0 and βx = αx/4 [Ijspeert et al., 2013].
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3.3.2 Orientational Dynamics

To describe the orientational system’s dynamics is of interest a representation which contains

no singularities and that its differentiation is numerically stable. However, there is not any

minimal representation of orientation such that it lies in R3 [Ude, 1999]. An alternative consists

on using rotation matrices R ∈ SO(3) and individually describing the change (dynamics) in each

of the nine numerical values of R as presented in Equation (3.1). However, this method does

not guarantee that the orthogonality requirements for rotation matrices are met at any time.

Another possible representation of orientations is unit quaternions q ∈ R4 = S3 [Kramberger

et al., 2016; Ude et al., 2014]. They address the strong assumption of independence between

numerical values by encoding the rotation as a whole, at the cost of more complex and computa-

tionally expensive calculations. Let the current orientational state of the closed-chain dual-arm

system be defined by the orientation, angular velocity and acceleration of its system’s frame

{O} in the workspace W, i.e. (qo, q̇o, q̈o) ∈ R4 = S3. The quaternion-based spring-damper

modelisation is described by the following set of nonlinear differential equations:

τ η̇o = αq(βq 2 log(go ∗ q̄o)− ηo), (3.3)

τ q̇o =
1

2
ηo ∗ qo, (3.4)

where ηo and η̇o respectively are the scaled angular velocity and accelaration, αq and βq are

constants defining the system’s orientational dynamics, and goq ∈ S3 is the model’s orientation

attractor. The operators log(·), ∗, and q̄o denote the logarithm, multiplication and conjugate

operations for quaternions, respectively.

3.3.3 Coupling Terms

The positional and rotational dynamics respectively described in Equation (3.1)-(3.2) and in

Equation (3.3)-(3.4) generate a linear continuous displacement between any initial and goal

state go. Any other dynamical behaviour can be encoded by extending these models with

coupling terms, i.e. virtual external force acting on the system’s frame {O}. For a manipulator

in a workspace W = R3 × SO(3), the positional dynamics are defined as:

τ żo = αx(βx(go − xo)− zo) + fox(·), (3.5)

τ ẋo = zo, (3.6)

where (xo, ẋo, ẍo) ∈ R3 is the system’s positional state and fox(·) ∈ R3 is the coupling force.
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For the same manipulator in a workspace W = R3 × SO(3), the system’s orientational state is

described by (qo, q̇o, q̈o) ∈ R4, the dynamics of which are dfined as:

τ η̇o = αq(βq 2 log(go ∗ q̄o)− ηo) + foq(·), (3.7)

τ q̇o =
1

2
ηo ∗ qo, (3.8)

where foq(·) ∈ R4 is the corresponding coupling term.

The coupling terms describe the profile of the external force affecting the natural positional and

orientational dynamics of the system, respectively. In other words, fox(·) and foq(·) characterise

the system’s behaviour, thus being useful to encode and retrieve any primitive skill. For the

sake of clarity, an example is provided to illustrate the spring-damper modelisation altogether

with the use of coupling terms.

Figure 4.1 examplifies the coupling terms concept with the skill of drawing the letter G on a

two-dimensional (2D) plane. To this aim, the system is modelled in W = R2 as two spring-

damper systems describing the change in position in each dimension. The starting and goal

positional configurations are set at the most top-right and inner part of the letter G, respec-

tively. According to this modelisation, different G-shapes (see Figure 3.2a) are defined by the

corresponding external forces (coupling terms) actuating on each dimension (see Figure 3.2b and

Figure 3.2c). The letter’s silhouette is uniquely conditioned by these external forces (coupling

terms); a smoother set of forces leads to a rounder G-shape (highlighted in red).

(a)

(b)

(c)

Figure 3.2: Skill of drawing the letter G represented in the force level according to a spring-
damper system modelisation. (a) Resulting G-shapes on a 2D plane. (b)-(c) External forces in
the x1 and x2 dimensions, respectively. The dashed line is a zero-force reference.
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3.4 Dual-arm Grasping Geometry

Any action referenced to the object’s frame {O} can be projected to the end-effectors using

the grasping geometry of the manipulated object. This allows computing the required end-

effector control commands to achieve a particular absolute task. For the end-effector i there is

a transformation map or grasping matrix Gi which establishes a velocity relation between the

contact point Ci and the systems reference frame {O} as:

ẏCi = GT
i ẏo, (3.9)

where, for a workspace W = R3 × SO(3), ẏ ∈ R6 is the concatenation of the system’s positional

velocity ẋ ∈ R3 and angular velocity in Euler format Euler(q̇) ∈ R3.

The grasping matrix of the end-effector i is defined as:

Gi ∈ R6×6 =


I3×3 O3×3

S(ri) I3×3


 , (3.10)

where I3×3 is the identity matrix, and S(ri) ∈ R3×3 is the skew-symmetric matrix performing

the cross product:

S(ri) =




0 −rz ry

rz 0 −rx
−ry rx 0


 , (3.11)

where ri is the distance from the object’s reference frame {O} to the contact point Ci.

A global grasp map G for the dual-arm manipulator can be defined by horizontally concatenating

the grasp matrix of each end-effector, i.e. G = [GL GR] ∈ R6×12 where GL and GR are the left

and right arm grasp matrix, respectively.



Chapter 4

Learning Primitive Skills

Humans master a significant number of primitive skills. The modelisation of the dual-arm

manipulator in the Cartesian space as a spring-damper system let us exploit coupling terms to

make the robot behave in a more human-like manner. In other words, coupling terms can be used

to encode and reproduce any primitive skill. This chapter presents some generic mathematical

formulation under which many primitives can be encoded, namely: goal-oriented motions (both

for position and orientation), obstacle avoidance and force interaction.

4.1 Goal-oriented Dynamics

The non-linear dynamical behaviour of any task can be represented using dynamic movement

primitives (DMPs). This mathematical encoding support has proven to be a versatile tool for

modelling and learning complex motions, given that: (a) any movement can be efficiently learned

and generated, (b) a unique demonstration is already generalisable, (c) convergence to the goal

is guaranteed, and (d) their representation is translation and time-invariant [Ijspeert et al., 2013;

Pastor et al., 2009]. Following up with the example depicted in Section 3.3.3, Figure 4.1a shows

some of these DMP-inherent generalisation capabilities applied to positional dynamics.

The system modelisation defined in Equation (3.5)-(3.8) can integrate DMPs as the coupling

terms fox(·) and foq(·). Regardless of the different formulation of the positional and orienta-

tional dynamics, DMPs are applied in the same fashion. For each spring-damper defining the

perturbationless system’s dynamics, there is one DMP-based coupling term which shapes the

dynamics. That is, for a workspaceW = R3 × SO(3), a total of seven DMPs are required: three

for the positional and four for the orientational information.

15
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(a)

(b)

(c)

Figure 4.1: DMP-based modelisation and generalisation of G-shapes on a 2D plane. (a) Given
demonstration (polka dotted trajectory), learnt G-shape (red trajectory) and generalisaton from
different start and goal positions (blue and green trajectories). (b)-(c) Learnt dynamics (red
line) in the x1 dimension. They are the result of a weighted combination of ten RBF. The
corresponding weights are the ten segments in (b), and the set of RBF are depicted in (c).

Formally, a DMP is a weighted linear combination of non-linear RBFs [Ijspeert et al., 2013;

Pastor et al., 2009]. The value of such non-linear f(·) function when evaluated at a specific

numerical value k ∈ k is defined as:

f(k) =

∑N
i=1wiΨi(k)
∑N

i=1 Ψi(k)
k, (4.1)

Ψi(k) = exp
(
−hi(k − ci)2

)
, (4.2)

where ci and hi > 0 are the centres and widths, respectively, of the i ∈ [1, N ] RBFs dis-

tributed along the trajectory. Each RBF is weighted by wi. The phase variable k avoids direct

dependency of f(·), and thus, the coupling terms, on time. The dynamics of k are defined as:

τ k̇ = −αkk, (4.3)

where the initial value of the canonical system k(0) = 1 and αk is a positive constant.

The learning of the DMPs relies on adjusting the set of RBF, i.e. the weight vector w, composed

of all weights wi, which makes the previously modelled system in Equation (3.5)-(3.8) adjust to

a recorded skill propioception information {(x, ẋ, ẍ) ∈ R3 (q, q̇, q̈) ∈ R4}k ∀ k ∈ [1 T ], where

k represents time t = k∆t and T is the total duration of the demonstrated primitive skill.
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Figure 4.1b and Figure 4.1c follow up with the example introduced in Section 3.3.3 to illustrate

this learning procedure. Finding the weights wi (line segments in Figure 4.1b) which make the

set of ten RBF (see Figure 4.1c) adjust to the dynamics of the recorded G-shape (red trajectory).

4.2 Obstacle Avoidance

An analytical description of how humans steer around an obstacle was first presented in [Fajen

and Warren, 2003]. Later on, such biologically-inspired formulation was used in [Hoffmann et al.,

2009] for single-arm manipulation purposes. Let xo, ẋo, and θo be respectively the system’s {O}
position, velocity and orientation in the workspace W (see Figure 4.2a). In order to avoid an

obstacle, the positional dynamics in Equation (3.5)-(3.6) need to change accordingly to:

fox(·) ∼ fo(xo, ẋo) = R ẋo θ̇, (4.4)

where R ∈ SO(3) is a π/2 rotation matrix with respect to the vector r = (xobstacle − xo)× ẋo,

and θ̇ is the desired turning velocity:

θ̇ = γ θ exp
(
−β |θ|

)
, (4.5)

where γ and β are tuning constants. Their effect can be best understood in Figure 4.2b: γ sets

the abruptness of the obstacle avoidance behaviour, and β determines its sensitivity.

(a) (b)

Figure 4.2: Obstacle avoidance primitive skill proposed in [Fajen and Warren, 2003]. (a) Ma-
nipulated object (brown prism) and obstacle (grey circle). (b) Change of steering angle θ̇ of the
original formulation in Equation (4.5) with γ = 1000 and β = 20/π.

The original formulation of Fajen and Warren experiences some limitations, namely: (i) the dead

zone that makes the system less reactive as the heading towards an obstacle tends to zero (see

black curve in Figure 4.3a and Figure 4.3b), (ii) the lack of distance awareness to the obstacles,
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and (iii) the fact of being parameter dependant [Rai et al., 2014, 2017]. To address these issues,

this work reformulates Equation (4.5) as:

θ̇ = a sign(θ) exp

(
−θ

2

c2

)
exp
(
−k d2

)
, (4.6)

where a sign(θ) exp
(
−θ2/c2

)
addresses the aforementioned (i)-issue by shapping the absolute

change of steering angle as a bell-shaped function (see red curve in Figure 4.3a and red trajectory

in Figure 4.3b), and exp
(
−k d2

)
tackles the (ii)-issue by vanishing the effect of the previous term

according to the distance d to the obstacle. The (iii)-issue is solved by learning the parameters a,

c and k from human demonstrations, which control the abruptness, sensitivity, and anticipation

of the obstacle avoidance behaviour, respectively.

Learning the parameters a, c and k from human demonstrations avoids blindly hand-tunning

the behaviour of the obstacle avoidance skill. This is achieved using least mean squares (LMS)

after log-linearising Equation (4.6) and arranging it as:

log θ̇ =

[
log a

1

c2
k

]



1

−θ2

−d2


, (4.7)

where the training data θ̇, θ and d contain the periodically sampled value of θ̇, θ and d expe-

rienced during the obstacle avoidance demonstration. θ̇ is retrieved from Equation (4.4), where

fo(xo, ẋo) = fox(·)obs − fox(·), i.e. the difference on the dynamics between a perturbationless

task fox(·) and one with obstacles fox(·)obs is only motivated by the presence of an obstacle.

(a) (b)

Figure 4.3: Change of steering angle θ̇ and dead zone issue. (a) Absolute representation of Fig-
ure 4.2b (black curve), and the proposed alternative in Equation (4.6) with a = 66.07, c = 0.4732
and k = 0 (red curve). (b) Following the same colour code, both methods confronting an obsta-
cle (grey circle) in a 2D environment. The original formulation does not react against imminent
collision, instead the proposed alternative provides a smooth and coherent behaviour.
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4.3 Force Interaction

Manipulation of a rigid object via a dual-arm system requires each end-effector to be in contact

with the object. This arises the need of controlling the force applied by each end-effector on the

object, thus preventing damaging it or the system itself. A particular case is manipulation by

force contact (without grasping the object), which not only requires each end-effector to be in

contact with the object but also to apply the sufficient forces to ensure grasp maintenance, i.e.

prevention of contact separation and unwanted contact sliding [Lin et al., 2018].

The complexity of this task usually requires modelling the necessary coupling forces as a dy-

namical function subjected to the complete state of the system, i.e. f(xo, ẋo, ẍo). However,

learning this complex model from human demonstrations can be challenging and might require

many demonstrations. An alternative for applications with low-dynamical requirements was

presented in [Gams et al., 2014]. They approximated the previous dynamical function with a

force tracking controller defined as:

ẏCi = K(Fdi − Fri), (4.8)

where, for a workspace W = R3 × SO(3), ẏCi ∈ R6 contains the linear and angular (in Euler

format) velocity commands for the end-effector i to correct the errors in force and torque contact,

K ∈ R6×6 is an error multiplying constant, Fdi ∈ R6 is the desired coupling force and Fri ∈ R6 is

the current coupling force retrieved from the robot’s sensors. Thus, the learning of this primitive

skill resides on learning from demonstrations which Fdi ensures grasp maintenance.



Chapter 5

Framework for Robust Dual-arm

Manipulation

In order to endow robots with real-time, robust and autonomous dual-arm manipulation, while

letting non-robotics-experts to program and customise the system’s behaviour easily, this work

presents the learning-based framework depicted in Figure 5.1. Such an architecture jointly

addresses the aforementioned requirements with three sequential parts: (i) the learning module

that learns a set of primitive skills from human demonstrations, (ii) the roll-out module that

combines those primitive skills to plan a trajectory which makes the system succeed at a task,

even in unfamiliar environments and (iii) the evaluation module that lets a human-in-the-loop

supervise the robot’s behaviour and reteach a specific skill, if required.

Figure 5.1: Scheme of the three stages involved in the proposal. Learning: a human demonstrator
teaches some primitives behaviours to a system. Roll-out: the robot exploits (generalises and
combines accordingly to the environment awareness) the acquired knowledge. Evaluation: an
evaluator inspects the system’s performance and decides whether reteaching is necessary.

20
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5.1 Learning Module

A complex task can be represented by a limited repertoire of simple behaviours, i.e. primitive

skills [Montesano et al., 2008; Pastor et al., 2009]. Motivated by the hindrance of demonstrating

a behaviour through kinesthetic guiding and the challenge of deducing the human intentions

behind such demonstration (see Section 3.1), the proposed framework learns a set of primitive

skills individually, i.e. in a one-at-a-time fashion [Bajcsy et al., 2018]. In the context of dual-

arm manipulation, this results in a library of independent primitive skills, some of which are

represented in the absolute skill space and some others in the relative skill space (see Section 3.2).

Following up with the modelisation of the dual-arm system introduced in Section 3.3 and later

formalised in Equation (3.5)-(3.8), the learning of any primitive skill is based on describing

the virtual external forces affecting the natural positional and orientational dynamics of the

modelled spring-damper system. This is, given a kinesthetic demonstration represented by the

acquired propioception information {(x, ẋ, ẍ) ∈ R3 (q, q̇, q̈) ∈ R4}k ∀ k ∈ [1 T ], find and learn

the coupling terms {fox(·) ∈ R3 foq(·) ∈ R4}k ∀ k ∈ [1 T ], where k represents time t = k∆t and

T is the total duration of the demonstrated primitive skill.

Within the framework, the profiles of the coupling forces are characterised by isolating such

terms from the system’s model in Equation (3.5)-(3.8). Then, each retrieved coupling force

is learned accordingly to the demonstrated primitive skill; as discussed in Chapter 4, different

primitive skills have a different mathematical representation. Thus, the framework needs to be

aware of which action is being learnt at demonstration time.

5.2 Roll-out Module

Given a library containing a repertoire of absolute and relative primitive skills, these motions

need to be properly combined to confront dual-arm tasks in a wide range of scenarios. The

framework addresses this challenge in a twofold procedure: (i) retrieves the effect of each prim-

itive skill at the velocity level, and (ii) selects and activates the effects of those primitives to

succeed in the commanded task. Formally, for a workspace W = R3 × SO(3), this is defined as:


ẏL

ẏR


 = GT

J∑

j=1

wj ẏoj +

K∑

k=1

wk


ẏCL

ẏCR


 , (5.1)

where, considering i = {L, R}, ẏi ∈ R6 describes the linear and angular velocity commands for

the i end-effector which satisfies the set of activated primitive skills, and ẏoj ∈ R6 and ẏCi ∈ R6
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are the velocities of the j ∈ [1, J ] absolute and k ∈ [1, K] relative primitive skill available in the

library. Note that all these velocity vectors belong in R6 because their components representing

angular velocities are in Euler format. Absolute and relative primitive skill selection is conducted

with the weights wj and wk, respectively.

The velocity for each primitive skill is retrieved from the system’s model defined in Equa-

tion (3.5)-(3.8). Bearing in mind that each primitive skill is described by its coupling terms,

this model provides the desired system acceleration subject to a primitive skill. By means of

integration, the corresponding desired velocity and position can be obtained. All this process is

known as roll-out in the LbD community. According to the design of the proposed framework,

this process uniquely needs to be extended until the velocity level (see Equation (5.1)).

Dealing with the action challenge, i.e. which set of primitive skills from the library needs to

be considered accordingly to the desired task and object affordances, is currently not the focus

of this research. In fact, this question constitutes the main motivation of a particular line of

research. Such an alternative is considered for future work (see Chapter 7). In the scope of this

thesis, the desired task and object to manipulate are known in advance, which lets us loading

the framework’s library with the essential primitive skills. Given this context, all weights wj

and wk in Equation (5.1) are all set to one. This assumption is further detailed and exemplified

in the different evaluation scenarios reported in Chapter 6.

5.3 Evaluation Module

There is a critical lack of standardised metrics for motion evaluation purposes, difficulting an

objective analysis of the trajectory conducted by a system. This becomes even more critical

when dealing with dynamic and unconstrained environments. This fact has led to qualitative

evaluation being the predominant assessment protocol of motions in the LbD literature [Grun-

wald et al., 2008]. In some cases, this qualitative analysis goes along with ad-hoc metrics to

numerically represent a particular feature of the system’s performance. Below follows a brief

discussion of some procedures or metrics that can be employed to evaluate the resulting outcome

of the proposed framework. However, their usage is dependant on the user’s interest.

As an example, the human-robot interaction (HRI) community is interested in enhancing the

acceptability and compatibility of robots in human workspaces [Ajoudani et al., 2017]. At

some extent, the proposed framework can be used for this purpose; learning all primitive skills

from human demonstrations arise expectations about the degree of similarity that a robot’s

final performance might have with the demonstrator’s behaviour under the same conditions.
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A possible metric to quantitatively evaluate this feature consists on computing the human-like

similarity of the framework’s outcome. An alternative for conducting this study consists of

recording some samples of both the robotic and human approach in a particular scenario to

quantify their deviation with the Kullback-Leibler (KL) divergence statistic. The lower this

indicator is, the higher the chances are that these two agents have similar behaviours.

An overall analysis might also provide useful information about the system’s performance. Su-

pervising and qualitatively assessing the robot’s performance can help to detect a wrongly learnt

primitive skill. For instance, two main primitives are required for hitting a tennis ball: keeping a

proper orientation of the tennis racket and performing the motion to push the ball. The failure

on correctly inferring any of these two skills to a novel situation should be easily detectable.

In this context, the demonstrator could reteach the misleading characteristic of the robot’s be-

haviour while keeping the rest of primitive skills unmodified. This feature comes in handy to

avoid the laborious process of loading the framework’s library from the ground up.

Note that being able to reteach a particular aspect of the robot’s behaviour results from the

strategic formulation of the system, primitive skills and framework presented throughout this

manuscript. As previously discussed in Section 5.1, the proposed architecture exploits the one-

at-a-time teaching fashion introduced in [Bajcsy et al., 2018] for a twofold benefit: (i) from

the learning and manipulation point of view, harvesting primitive skills lets a robot adapt its

behaviour to confront novel scenarios (see Section 5.2), and (ii) equitably relevant for the HRI

community, learning each primitive skill in isolation eases the hindrance of teaching a robot

through kinesthetic guidance, which is an extremely critical issue in the dual-arm context. All

in all, these two advantages are gathered under the realm of the proposed framework, thus

allowing non-robotics-experts to interact, teach and modify the behaviour of a dual-arm system

endowed with enhanced generalisation capabilities to novel scenarios.
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Results and Evaluation

Experimental evaluation has been carried out to demonstrate the applicability of the two main

contributions of this work: (i) an online obstacle avoidance skill which reacts even against immi-

nent collisions, and (ii) a framework for generalisable dual-arm manipulation which learns from

human demonstrations. Such an evaluation has been subjected to some limitations inherent

from the evaluation platform, namely: (i) reduced dual-arm workspace, and (ii) lack of realistic

simulated force/torque sensors. Moreover, some assumptions have been made to ease the evalu-

ation of the proposal: (i) the required set of primitive skills to confront each scenario is defined

beforehand (see Chapter 5), and (ii) the location of the obstacles and the object to manipulate

is directly retrieved from the simulator. This information could also have been extracted by

visual perception but has been avoided as it is currently not the focus of this research.

This chapter firstly introduces the experimental setup used to evaluate the framework and elab-

orates on the aforementioned limitations and assumptions. It then validates the generality of the

goal-oriented encoding as well as the suitability of the reformulated obstacle avoidance behaviour

for humanoid robots. Finally, this chapter analyses the applicability of the entire framework to

conduct dual-arm pick-and-place tasks with the presence of obstacles. The experiments have

involved synthetic environments, the simulated and real iCub humanoid robot.

6.1 Experimental Setup

The generality of the proposed framework is narrowed down to provide an application case. The

designed showcase has to be feasible for the dual-arm robotic platform available in the Edinburgh

Centre for Robotics. Thus, this section firstly gives an overview of the iCub humanoid robot

24
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and the designed pick-and-place task. Bearing in mind the robot’s capabilities and the tasks

requirements, this section analyses the workspace and object’s manipulability. It then details

the undertaken strategy to record and teach a robot from human demonstrations. Finally, this

section gives an overview of the proposal’s deployment on a simulated iCub humanoid robot.

6.1.1 iCub Humanoid Robot

iCub is an open source humanoid robot testbed for research into human cognition and artificial

intelligence applications [Metta et al., 2008] (see Figure 6.1). It was first designed back in 2008 by

the Italian Institute of Technology (IIT). The dimensions of this platform are similar to that of

a 3.5-year-old child (104cm). It can see, hear, and has the sense of proprioception and movement

(using encoders, accelerometers and gyroscopes). It also has the sense of touch, and it senses

how much force exerts on the environment. The robot is not designed for autonomous mobility,

consequently not being equipped with onboard batteries or the required processors. Instead, it

has an umbilical cable to provide power and a network connection via Gigabit Ethernet.

Figure 6.1: iCub humanoid robot.

Since the first robots were constructed, the design has undergone several revisions and im-

provements. The current version in the Edinburgh Centre for Robotics has 53 actuated DoFs

organised as follows: three in the torso, six in the head, seven in each arm, nine in each hand, and

six in each leg. The head has stereo cameras in a swivel mounting where eyes would be located

on a human and microphones on the side. It is mainly covered by an elastic fabric simulating

the face skin, which lets the robot make some facial expressions by moving its mouth. All this

equipment is connected with controller area network (CAN) bus to an on-board PC104, which

centralises all control of the humanoid.

The constitution of the iCub’s seven-DoF manipulators, its software architecture which operates

under the YARP middleware, and its inverse kinematic control are detailed in Appendix B.



Chapter 6: Results and Evaluation 26

6.1.2 Pick-and-Place Showcase

The suitability of the proposed framework to endow a dual-arm manipulator with enhanced

autonomy is evaluated with a dual-arm pick-and-place of a parcel. This task does not involve

dexterity with the fingers but, instead, manipulation by force contact, i.e. each end-effector needs

to be in contact with the object and apply the sufficient forces to ensure grasp maintenance [Lin

et al., 2018]. Moreover, maintaining a parallel orientation between the end-effectors promotes a

larger area of contact, and thus, more friction. Not satisfying these synchronisation requirements

may lead to unwanted contact sliding or risking the handled object to stress.
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Figure 6.2: Pick-and-place of a parcel (brown prism) in the presence of obstacles (grey prism).

The designed pick-and-place task is sketched in Figure 6.2. Parcels (brown prisms) are meant

to be taken and placed in different configurations of the workspace, adjusting the behaviour

of the dual-arm whether there is an obstacle or not (grey prism). To this aim, the library of

primitive skills is loaded with: underlying dynamics of a pick-and-place task, obstacle avoidance

and grasp maintenance (force interaction) behaviours. The dimensions of the parcel and obstacle

are dependant on the workspace and manipulability analysis conducted next.

6.1.3 Workspace and Manipulability Analysis

Exploiting iCub’s whole control body dynamics requires great expertise with the platform and

many calibration routines. In the scope of this project, the control of the humanoid robot

has been initially limited to the two seven-DoF manipulators. This leads to a more restricted

workspace where the platform can operate. Thus, it is essential to set a showcase task which

lies within the common (dual-arm) workspace between end-effectors.

iCub’s dual-arm workspace has been determined using the Monte Carlo sampling approach

proposed in [Alciatore and Ng, 1994]. This method uniformly samples one arm’s joint space

to compute the corresponding end-effector poses. Such a method has been implemented in

Matlab. Figure 6.3 illustrates iCub’s left and right arm workspace when using this approach.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.3: iCub’s left (top row) and right (bottom row) end-effector’s workspaces. From left to
right: left, front, right and top view.

A total of 100,000 joint configuration sets have been sampled. The iCub’s forwad kinematics

(FK) used to perform this evaluation is detailed in Appendix B.2.1.

Applying the Monte Carlo sampling approach individually for each arm leads to two point clouds

which do not consider the constraints of a closed-chain dual-arm system subjected to a specific

task. As discussed in Section 6.1.2, the kinematic requirements of a pick-and-place task are

constant distance and parallel orientation between both end-effectors. These constraints have

been imposed on the previous point clouds depicted in Figure 6.3, seeking for pairs of end-effector

configurations (coming from different arms) which are separated the parcel’s size d with ±5mm

tolerance, and similar orientation in the workspace with ±3 degrees of tolerance at any axis.

The dual-arm workspace is analysed subject to the parcel’s characteristics. This aims to find

the parcel’s width which leads to a larger manipulability of the parcel during the experiments.

Keeping the aforementioned orientation constraints, the considered parcels widths range from

0mm (end-effectors in flat clapping configuration) to 500mm, in increment steps of 50mm.
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 6.4: Analysis of iCub’s dual-arm workspace contrained by pick-and-place task require-
ments. Top row: box plot reflecting the constrained workspace subject to different parcel
widths d. Second row: workspace for parcel width d = 100± 5mm. Bottom row: parcel width
d = 250± 5mm. From left to right: left, front, right and top view. All presented information is
also contrained by the aforementioned orientation error of 0± 3 degrees.
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Bearing in mind the randomness of the used Monte Carlo sampling approach, a total of 10 trials

per parcel size were conducted to determine the probabilistic significance of the analysis. The

obtained data is presented as a box plot and exemplified for the parcel widths of d = 100mm

and d = 250mm in Figure 6.4. After verifying probabilistic independence between clusters, it

can be concluded that the parcel size constraining the less iCub’s workspace is d = 250mm.

Thus, the experiments reported in the remainder of this thesis are for parcels of this size.

To further increase iCub’s dual-arm workspace, the torso’s DoFs can be used. However, as

explained in Appendix B.2.1, the built-in YARP implementation of iCub’s inverse kinematics

(IK) does not cope with the complexity of internally solving the closed-chain problem, thus

not managing the corresponding DoFs of the torso. Following the recommendations in the

YARP documentation, an external manager has been implemented to control the torso’s roll

according to a heuristic which minimises the distance between iCub’s chest and the object to be

manipulated. Figure 6.5 depicts iCub’s constrained workspace when managing the torso’s roll

in the range of ±30 degrees.

(a) (b) (c) (d)

Figure 6.5: iCub’s dual-arm workspace with external management of the torso’s DoF roll. Afore-
mentioned pick-and-place task constraints apply: parcel width d = 250± 5mm and orientation
error of 0± 3 degrees. From left to right: left, front, right and top view.

6.1.4 Demonstration Recording and Learning

Section 6.1.2 has introduced the requirements to succeed on a dual-arm pick-and-place task

in the presence of unexpected obstacles. Such a task could be demonstrated in an all-at-once

fashion, i.e. a particular demonstration exploiting all skills in order to succeed. This raises

concerns about the legibility of the human intentions and hinders teaching the robot through

kinesthetic guiding [Bajcsy et al., 2018]. The proposed framework has been designed to address

all these challenges by learning the different skills one-at-a-time. Notably, for the commanded
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task, three primitive skills are learnt: the underlying dynamics of a pick-and-place task, obstacle

avoidance and grasp maintenance (force interaction).

Two strategies have been used to record human demonstrations: kinesthetic guiding on the

real iCub humanoid and trajectory demonstration using a trackpad as a haptic device. To

conduct kinesthetic teaching, the systems’ joints are set in gravity compensation allowing the

teacher to physically manoeuvre the robot through the desired skill. During the demonstrations,

Description Parameter Equation Value

PD overall gain αx (3.5) 10

PD configuration gain βx (3.5) 2.5

OD overall gain αq (3.7) 10

OD configuration gain βq (3.7) 2.5

Time scaling factor τ (3.5)-(3.8) 1

Grasping geometry left arm rL (3.10)-(3.11) [0 0.1 0]T

Grasping geometry right arm rR (3.10)-(3.11) [0 −0.1 0]T

Table 6.1: Parametrisation of the closed-chaing dual-arm system modelled in Section 3. Note:
positional dynamics (PD), orientational dynamics (OD).

Description Parameter Equation Value

Number of RBF N (4.1) 35

Canonical system αk (4.1)-(4.3) 1

Weight vector w (4.1) TBL

Table 6.2: Parametrisation of the goal-oriented skill dynamics modelled in Section 4.1. Note:
to be learnt (TBL).

Description Parameter Equation Value

OA abruptness a (4.6)-(4.7) TBL

OA sensitivity c (4.6)-(4.7) TBL

OA anticipation k (4.6)-(4.7) TBL

Table 6.3: Parametrisation of the obstacle avoidance behaviour modelled in Section 4.2. Note:
obstacle avoidance (OA), to be learnt (TBL).

Description Parameter Equation Value

Error multiplying constant K (4.8) 10 I6×6
Desired coupling force Fd (4.8) TBL

Table 6.4: Parametrisation of the force interaction skill modelled in Section 4.3. Note: to be
learnt (TBL).
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proprioception information is retrieved via YARP ports using the built-in yarpdatadumper

module. The recorded data is already described with respect to the 3D space of the robot.

Limiting the demonstrations to be recorded exclusively with the robot hampers acquiring new

data. Alternatively, a Matlab script has been implemented to read 2D trajectories drawn on a

trackpad. Two or more of these demonstrations can be synthesised to obtain 3D demonstrations.

To use such information on iCub’s architecture, it needs to be scaled to real-world units and

referenced with respect to the robot’s frame. A parser implemented in C++ lets the robot’s

YARP-based architecture access to these demonstrations stored as Matlab variables.

Indifferently from the acquisition method used to record a demonstration, the learning of the

different primitive skills and its retrieval has been done with the same parametrisation and at a

discretisation frequency of 100 Hz. Table 6.1 details the parameters for the system modelisation.

Table 6.2, Table 6.3 and Table 6.4 detail the parameters for the goal-oriented dynamics, obstacle

avoidance and force interaction primitive skills, respectively. Such a parametrisation has been

used for all experiments reported in the remainder of this chapter.

It is worth highlighting that the intrinsic parameters of the framework weighting each of the

primitive skills within its library are all equal to one (see Chapter 5). In the scope of this project,

the library is uniquely loaded with the primitive skills required to succeed on the showcase. As

it has been previously discussed, the high-level reasoning module according to environment and

object affordances is out of this thesis scope but left for future research.

6.1.5 Framework Deployment on iCub Humanoid

Further experimental setup has been required to gather data, test and evaluate the proposal

on a real/simulated iCub humanoid robot. First of all, as shown in Figure 6.6, an environment

has been set up in the Gazebo simulator according to the pick-and-place task described in

Section 6.1.2 and the workspace analysis conducted in Section 6.1.3.

Figure 6.6: Experimental setup of the pick-and-place task and the iCub humanoid in Gazebo.
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Figure 6.7: Layout of the framework deployment on the iCub humanoid. Note: inverse kine-
matics (IK), grasping geometry (GG), primitive skill (PS).

The deployment of the entire framework on the iCub humanoid robot has required the design,

implementation and integration of some extra components. A layout of this integration is

schematised in Figure 6.7. Mainly, three big functional modules can be distinguished: the

proposed framework (blue rectangles), the real/simulated platform (magenta rectangles), and

the extra components (green rectangles). The theoretical basis of the proposed framework has

been detailed throughout Chapter 3, Chapter 4 and Chapter 5. Practically, it also acts as a

coordinator of all external elements required for integrating the framework to the iCub platform.

iCub has a built-in YARP architecture which can be exploited to simulate the robot’s dynamical

behaviour in the Gazebo world. Among all others functionalities of iCub’s architecture, there are

three that are of the framework’s particular interest: the joint sensors of the arms (for learning

(see Section 6.1.4) and control purposes), the control of the end-effectors (see Appendix B and

Section 6.1.3), and the environment awareness. Instead of retrieving the environment status

from the robot’s sensors, such information is directly extracted from the Gazebo simulator. For

this purpose, it has been implemented a C++ plugin for Gazebo which reports the state of the

parcel and any obstacle in the simulated world.

The HRI nature of the proposal requires an interface where the system’s model and learning can

be parametrised according to Section 6.1.4, and where a human-robot communication can be

established. Such duplex communication is set via command line using a YARP RPC port. Some

of the implemented functionalities via this channel are: retrieval of the system’s information,

configure different start and goal configurations, check whether a configuration is reachable,

change the parcel’s size, or, among others, simulate the planned task before execution. This

visualisation is displayed in the Gazebo simulator itself, thus addressing the lack of a visualiser in

the YARP architecture. For that purpose, an entire toolbox has been implemented to represent

trajectories, grasping setpoints, obstacles and the simulated movement of the parcel.
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Fully integrating all these modules has only been possible after implementing a library to handle

the different requirements regarding data types, reference frames and orientation representations.

This comes motivated by Gazebo working with the library Ignition, iCub having its math library

implemented within the YARP architecture, and Eigen libraries being an efficient approach to

conduct matrices management and computation. Additionally, this self-implemented library

also provides all required transformations between frames, e.g. from world to robot coordinates,

as well as from the end-effectors’ or the object’s frame to any other. Moreover, it takes care

of the conversions between the representation of rotations in Euler format (required for making

the framework understandable and accessible to humans), quaternions (needed for the system

modelisation), and axis (required for the iCub control).

Early experimentation on the simulated iCub robot unveiled the lack of realistic simulated

force/torque sensors. This fact complicated the control of the exerted force on the carried

object. Alternatively, following the approach undertaken in [Gams et al., 2014] for simulated

environments, the grasp maintenance skill primitive in Equation (4.8) has been reformulated as:

ẋCi = K(Ddi −Dri), (6.1)

where, for a workspace W = R3 × SO(3), Ddi ∈ R6 is the desired relative distance and orienta-

tion between the end-effector i and the carried object and Dri ∈ R6 is the current state of such

features retrieved from the robot’s sensors. As in Equation (4.8), ẏCi ∈ R6 is a vector of velocity

commands for the end-effector i to correct the pose errors and K ∈ R6×6 is an error multiplying

constant. All in all, instead of learning the required coupling force Fdi which ensures grasp

maintenance, the reference Ddi has been defined accordingly to the grasping geometry.

6.2 Goal-oriented Skill

This work has modelled the closed-chain dual-arm manipulator as a spring-damper system (see

Section 3.3). Such a modelisation let us encode any goal-oriented skills with the DMP-based

formulation presented in Section 4.1. The generalisation capabilities of this encoding approach

for positional and orientational dynamics are presented next.

6.2.1 Positional Dynamics

The encoding and retrieval of the 3D positional dynamics are done with three DMPs. As intro-

duced in Section 4.1, this approach already offers some generalisation capabilities. Figure 6.8

demonstrates such generability in the pick-and-place context. The demonstrated dynamics (red
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trajectory in Figure 6.8) translate the parcel from its initial position at xs = [0 0 0.02]T metres

to the configuration xg = [0.4 0 0.03]T metres. As it can be observed, the dynamics move the

parcel along the x and z-axis simultaneously until a certain height is achieved. Then, the par-

cel exclusively moves in the xy-plane until the system is close to the desired xy-configuration.

Finally, the parcel is taken down to reach the desired 3D configuration.

Figure 6.8: DMP generalisation capabilities. Given a demonstration (red trajectory), rolling-out
the model in Equation (3.5)-(3.6) with a DMP as coupling term fox(·) lets the system move the
box (brown prism) to new goal states by mean of dynamics generalisation (blue trajectories).

The encoded dynamics have been used to infer the demonstration to novel goal configurations,

the position of which is within the range of±0.1 metres around the provided demonstration. This

has lead to the eight roll-outs depicted in Figure 6.8 (blue trajectories). These generalisation

capabilities also apply to different start configurations.

6.2.2 Orientational Dynamics

The encoding and retrieval of orientational dynamics is done with quaternion-based DMPs.

This approach can handle dynamics involving many DoFs at once and great rotations, such as

the ones depicted in Figure 6.9. The demonstrated dynamics rotate the parcel from its initial

orientation at es = [0 0 0]T degrees to the configuration eg = [90 90 0]T degrees. Specifically,

time

Figure 6.9: Orientational dynamics consisting on rotating a free-floating parcel from the most
left configuration es = [0 0 0]T degrees to the most right configuration eg = [90 90 0]T degrees.
Note that no rotation is executed at the first and last part of the demonstration.
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Figure 6.10: Framework’s orientational capabilities analysis. Demonstrated orientational dy-
namics (red lines), inference to undemonstrated orientations in the range ±25 degrees around
the demonstration (blue lines). (a)-(d) Profile of each variable of the quaternion q = [w x y z]T .

such rotation uniquely occurs during the middle part of the demonstration corresponding to the

60% of the task’s time. This is, the parcel does not change of configuration during the first and

last 20% of the task’s time. Such orientational dynamics are depicted as red lines in Figure 6.10.

The learnt model has allowed inferring the demonstrated dynamics to novel goal orientations

within the range of ±25 degrees around the provided demonstration (see blue lines in Figure 6.9).

These generalisation capabilities also apply to different start configurations.

6.3 Obstacle Avoidance Skill

The theoretical formulation and the corresponding advantages of the proposed obstacle avoid-

ance skill have already been demonstrated in Section 4.2. This section aims to show its suitability

to reproduce obstacle avoidance behaviours learnt from humans demonstrations. To this aim,

such a primitive skill has been taught to the real iCub with two different behaviours: reckless

(see Figure 6.11a) and conservative (see Figure 6.11b). While the former steers around the

obstacle (red sphere) closely, the latter keeps a larger distance to it. The recorded raw propri-

oception data of these two kinesthetic demonstrations is respectively portrayed in Figure 6.11c

and Figure 6.11d. As it can be observed, the retrieved trajectories are noisy and not smooth.
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Figure 6.11: iCub humanoid robot learning the primitive skill of obstacle avoidance with two
different behaviours: reckless (first column) and convervative (second column). (a)-(b) Hu-
man demonstrations to avoid an obstacle (red sphere). (c)-(d) iCub’s proprioception data.
(e)-(f) Processed proprioception data (red trajectory) and learnt behaviour (blue trajectory).

Figure 6.12: Generalisation capabilities to multiple obstacles and in 3D scenarios of the learnt
reckless (magenta trajectory) and conservative (green trajectory) obstacle avoidance behaviours.
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To learn from these demonstrations, the data has been preprocessed in two steps: (i) filtering

to remove outliers and high-frequency noise, and (ii) projecting the resulting information to the

2D space defined by the two principal components of the data. Figure 6.11e and Figure 6.11f

show the preprocessed data (red trajectories), which has been used in Equation (4.7) to learn the

parameters defining the demonstrator’s obstacle avoidance behaviour. The encoded reckless and

conservative styles are respectively depicted in Figure 6.11e and Figure 6.11f (blue trajectories).

Note that learning the parameters instead of the motion itself lets the robot generalise such

behaviour under different conditions and multiple obstacles (see Figure 6.12).

Figure 6.11 and Figure 6.12 point out the suitability of the proposed mathematical formulation

to encapsulate, reproduce and generalise the demonstrator’s style on avoiding obstacles. Dis-

crepancies between the demonstrated and retrieved behaviours are attributed to the noise in the

proprioception data, which increases the variance in the learning stage. Alternatively, a high-

precision tracking system such as the one used in [Rai et al., 2014] shall be considered. Because

the proposed approach extracts the parameters of a demonstrated obstacle avoidance behaviour,

other approaches than kinesthetic guiding can be employed for teaching this primitive skill.

6.4 Framework Evaluation

The entire framework conducting dual-arm pick-and-place tasks with the presence of obstacles

has been evaluated in both synthetic and simulated environments. The former scenario lets

testing the concept of the framework without the inherent robotics-constraints, such as reduced

workspace and the uncertainties present in the proprioception data and control. The latter case

is to demonstrate the applicability of the proposed framework in the iCub humanoid robot.

6.4.1 Evaluation on Synthetic Environments

Evaluation of the framework on the pick-and-place setup has been first carried out in a synthetic

environment to avoid the inherent robotics-constraints. The lack of world-like physics do not

allow simulating interaction forces, hence limiting the test and analysis of the framework on

three absolute skills: goal-oriented dynamics (both positional and orientational) and obstacle

avoidance behaviour. The resulting response of the framework is depicted in Figure 6.13.

Initially, a pick-and-place demonstration (red trajectory) is given to the system using a trackpad

as a haptic device (see Section 6.1.4). It consists of moving the parcel from the left to the right of

the workspace, without generating any rotation and without the presence of the obstacle (grey

prism). As discussed in Section 4.1 and later depicted in Figure 6.8, encoding the positional
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Figure 6.13: Dual-arm pick-and-place of a parcel (brown prism) in the presence of obstacles
(grey prism). Demonstrated task (red trajectory), infered task (blue trajectory), infered task
with obstacle avoidance (black trajectory). The composition of primitive skills lets the system
generalise to unfamiliar environments. (a) Perspective, (b) lateral, (c) top, and (d) front view.

and orientation dynamics underlying the execution of this task in a DMP formulation already

endows the system with some inherent generalisation capabilities (blue trajectory). This lets

the robot to infer the pick-and-place with small variations in starting and goal positions and

orientation (see Table 6.5). However, the generalisation capabilities are yet limited and unable

to generalise to the presence of obstacles. It is only after coupling the previously learnt obstacle

avoidance behaviour (see Section 6.3) and the pick-and-place dynamics together that the system

can generalise in real-time to the presence of unexpected obstacles (black trajectory).

Start configuration Goal configuration

Demonstrated scenario
xs = [0 0 0.02]T [m] xg = [0.25 0 0.02]T [m]

es = [0 0 0]T [deg] eg = [0 0 0]T [deg]

Unfamiliar scneario
xs = [0.08 0.1 0.02]T [m] xg = [0.25 0 0.06]T [m]

es = [0 0 0]T [deg] eg = [0 0 −20]T [deg]

Table 6.5: Summary of start and goal configurations (3D position and Euler XYZ orientation)
of the demonstrated and unfamiliar scenarios reported in Figure 6.13.
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Figure 6.14: Framework analysis in Figure 6.13 scenario. System’s natural dynamics (dashed
lines), demonstrated task (red lines), infered task (blue lines), obstacle avoidance (green lines),
and infered task with obstacle avoidance (black lines). First column: primitive skills at the force
level. Second column: forces affect at the Cartesian space. Top to bottom: x, y and z-axis.

The framework’s behaviour observed in Figure 6.13 is the result of different primitive skills

acting at the same time. Figure 6.14 depicts their interaction at the force level (first column)

and affect in the 3D Cartesian space (second column) along the aforementioned task. The

colour code of these plots is as in Figure 6.13. When the natural dynamics of the system are not

modified, i.e. the total virtual external force (coupling term) is null, the system reaches the goal

configuration with spring-damper dynamics (dashed lines). Since the demonstrated behaviour

does not follow such dynamics, the virtual force is not null (red lines). This force profile has been

encoded as a DMP to learn the demonstrated primitive skill. This knowledge already lets the

system to generalise the demonstrated dynamics to different start and goal configurations (blue

lines). The successful roll-out which generalises in front of obstacles (black lines) is obtained

after considering the obstacle avoidance primitive skill available in the framework (green lines).
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6.4.2 Evaluation on a Simulated iCub Humanoid

The framework’s robustness in undemonstrated scenarios has already been analysed in the con-

text of synthetic environments in Section 6.4.1. This section shows the applicability of the

proposal in a robotic platform, particularly on the simulated iCub robot. After the set up

procedure reported in Section 6.1.5, iCub has been taught in a one-at-a-time fashion four prim-

itive skills: (i) pick-and-place in a sawtooth shape fashion starting at xs = [0.3 0.25 0.56]T and

finishing at xg = [0.3 −0.25 0.56]T (encoded as a positional goal-oriented dynamics), (ii) rota-

tional motion of 20 degrees around the z-axis with dead-ends as in Section 6.4.1 (encoded as an

orientational goal-oriented dynamics), (iii) obstacle avoidance with conservative behaviour as in

Section 6.3, and finally, (iv) grasp maintenance by means of the parcel’s grasping geometry as

defined in Section 6.1.5. All these primitive skills have been loaded in the framework’s library

to be later exploited according to the tasks requirements introduced next.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.15: iCub humanoid robot exploiting the demonstrated pick-and-place task (green
trajectory) to succeed (blue trajectory) in Scenario-1 which has an obstacle (red sphere) at
xo = [0.3 0 0.6]T metres. (a) Parcel initial state, (b)-(d) grasping parcel laterally, (e)-(g) simul-
taneously exploiting some primitive skills to successfully conduct the pick-and-place task in an
undemonstrated scenario, and (h) overview of the trajectory adapted in real-time.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.16: iCub humanoid robot exploiting the demonstrated pick-and-place task (green
trajectory) to succeed (blue trajectory) in Scenario-2 which has an obstacle (red sphere) at
xo = [0.25 0 0.55]T metres. (a) Parcel initial state, (b)-(d) grasping parcel laterally, (e)-(g) si-
multaneously exploiting some primitive skills to successfully conduct the pick-and-place task in
an undemonstrated scenario, and (h) overview of the trajectory adapted in real-time.

Initially, the parcel is located on the table in configuration xp = [0.3 0 0.56]T metres (with a

random variation of ±5 centrimetres on the xy-plane) and ep = [0 0 0]T degrees (with variation

of ±10 degrees around the z-axis). This leads the parcel in front of the robot with a random

pose but still accessible to the robot workspace (see Figure 6.15a and Figure 6.16a). Given this

environment setup, the commanded task consists of (i) pick the parcel regardless its initial ran-

dom configuration, (ii) move it to the configuration xs = [0.3 0.25 0.56]T metres es = [0 0 18]T

degrees (iCub’s left side) and (iii) place the parcel to the configuration xg = [0.3 −0.25 0.56]T

metres eg = [0 0 −18]T (iCub’s right side). Only the latter stage of the task requires iCub to

avoid an obstacle located at xo = [0.25 0 0.55]T metres for Scenario-1 (see Figure 6.15), and

located at xo = [0.3 0 0.6]T metres for Scenario-2 (see Figure 6.16).

The former stage of the task, i.e. grasping the parcel, is completed by first retrieving the parcel’s

random configuration, then use the grasping geometry to compute the desired grasping points,
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and finally approach them laterally via the middle-setpoints displayed as red and blue prisms

for the right and left end-effector, respectively (see Figure 6.15a-Figure 6.15d for Scenario-1 and

Figure 6.16-Figure 6.16d for Scenario-2 ). From this stage on, the primitive skill for grasp main-

tenance ensures that both end-effectors are in flat contact with the box. Contact points between

these elements are displayed with the small blue spheres visible in Figure 6.15d-Figure 6.15g

and Figure 6.16d-Figure 6.16g for Scenario-1 and Scenario-2, respectively.

The two latter stages of the task are completed exploiting the learnt sawtooth-shaped pick-

and-place while, at the same time, ensuring grasp maintenance. During the first movement of

the task, i.e. moving from the configurations depicted in Figure 6.15d and Figure 6.16d to the

ones in Figure 6.15e and Figure 6.15e, there is not any obstacle. Consequently, the built-in

DMPs generalisation capabilities shown in earlier sections of this manuscript are sufficient to

address this pick-and-place task. However, the latter movement of the task involves adapting

the learnt dynamics to avoid an obstacle. In Scenario-1, since the obstacle (red sphere) is

collinear with the start and goal positions, i.e. below the demonstrated task (green trajectory),

the framework makes the robot circumnavigate the obstacle by the top of the obstacle (see

Figure 6.15e-Figure 6.15g). Instead, since the location of the obstacle in Scenario-2 is further

from the robot than the previous obstacle, the framework guides the system through a collision-

free trajectory near iCub’s chest (see Figure 6.16e-Figure 6.16g).

These two experiments executed with the simulated iCub humanoid robot have demonstrated

various of the aforementioned framework’s features. Having a repertoire of primitive skills avail-

able in the framework’s library allows exploiting them both simultaneously and sequentially to

obtain composed and complex tasks such as the ones reported in this section. The considered

scenarios involved real-time adaptation capabilities and using the self-implemented robot’s torso

controller to reach distant configurations. In all examples, the robot’s behaviour was success-

ful in performing the commanded dual-arm pick-and-place task, while avoiding obstacles and

ensuring grasp maintenance and synchronisation. All in all, these experiments have shown the

applicability and suitability of the designed framework for humanoid robots.
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Final Remarks and Future Work

This work has presented a novel end-to-end framework which endows a dual-arm system with

real-time, robust and less task-specific manipulation capabilities. Such an architecture is twofold:

(i) learns from human demonstrations to create a library of primitive skills, and (ii) combines

such knowledge to confront challenging unfamiliar scenarios with human-like manipulation ca-

pabilities. Unlike the framework of motion primitives in [Pastor et al., 2009], the proposed

approach handles primitive skills for dual-arm manipulation purposes while still being able to

combine different primitives at the same time. This feature is what differentiates the current

work from other state-of-the-art dual-arm oriented frameworks [Topp, 2017; Zöllner et al., 2004].

The evaluation conducted on the iCub humanoid suggest the proposal’s suitability for robust

dual-arm manipulation, yet with some room for improvement.

The framework is not restricted to the presented experimental evaluation nor platform. Any

system able to retrieve proprioception information can benefit from this work. Moreover, any

primitive skill that might be required for dual-arm manipulation can be included in the frame-

work’s library. The application case reported in this manuscript exemplifies this fact by con-

sidering, four types of primitive skills: positional and orientational goal-oriented skill dynamics,

obstacle avoidance behaviour and force interaction for grasp maintenance. The obstacle avoid-

ance behaviour which steers around obstacles in real-time was originally presented in [Fajen and

Warren, 2003], later reformulated in [Rai et al., 2017], and further enhanced in this work to

address the dead zone issue and discard distant obstacles. The desired performance of this skill

is learnt from human demonstrations using kinesthetic guiding on the real iCub humanoid.

The execution of this work has approximately followed the a priori planning presented in the

research proposal. Achieving the proposal’s goal has been possible after working around some

43
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unforeseen events happening during this master thesis. Firstly, the chance of presenting the

overall idea of this work in the 2018 AAAI Artificial Intelligence for Human-Robot Interaction

(AI-HRI) symposium, which involved writing a paper while conducting the experiments for this

master thesis. Secondly, the short notice of iCub’s reduced dual-arm workspace forced extending

the system’s modelisation and learning to also contemplate orientational information. Even

though this feature was not in the original proposal, it allowed exemplifying the pick-and-place

task even in iCub’s high-constrained workspace.

Future work will significantly extend the library of primitive skills such that more tasks and

scenarios involving challenging dual-arm manipulation behaviours can be addressed within the

framework. In this regard, imminent efforts will focus on exploiting the force/torque sensors of

the iCub humanoid robot to learn force-dependant primitive skills, such as the grasp mainte-

nance one, or other actions requiring complex synchronisation between end-effectors, such as the

opening of a bottle’s screw cap or succeeding in the peg-in-a-hole tasks. Then, action selection

will be integrated to automatically select from the framework’s library the necessary set of skills

to conduct a particular task subject to the environment and object affordances. In these lines,

Ardón et al. jointly exploits the objects and environmental semantic features to infer the best

grasping point [Ardón et al., 2018]. This idea can be extended to deal with the aforementioned

action selection requirements of the proposed framework.

Another potential direction is the evaluation of the framework from a HRI perspective. For that

purpose, non-robotics-experts will assess through questionnaires their experience with teaching

the iCub humanoid robot in a one-at-a-time versus all-at-once fashion. The expected outcome is

to qualitatively determine the ease of endeavour that the one-at-a-time demonstration baseline

supposes to naive users. This social experiment will also require the participants and the robot

to conduct a task in a novel scenario. This data will allow to quantitatively evaluate the human-

like similarity of the framework’s outcome using the aforementioned introduced KL divergence

statistic. All in all, this social study seeks to assess the effect of learning composable skills to

increase the acceptability and compatibility of robots in human workspaces.

The integration and evaluation of all these components into the framework constitutes the

primary roadmap for the PhD thesis.



Appendix A

Apprenticeship Learning: A Survey

The manuscript attached in the next pages is an extensive survey on apprenticeship learning. It

is still under preparation, but expected to be presented in The International Journal of Robotics

Research after the completion of the present master thesis.
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Abstract— Real-world robots are becoming a vital ingredient
in society. Not only they are required to live in environments
originally designed for humans but also to perform human
tasks. Hence, it is reasonable to expect robots to learn and
master some skills as we humans do: from demonstrations
and/or sharing information (social learning) and with practice
(self-learning). In the last decades, many efforts have been
focused on exploiting the previous approaches. However, in
an attempt to have more intelligent agents, combining both
approaches becomes essential. This is called apprenticeship
learning, which attempts to endow robots with enhanced
learning, generalisation and scalability capabilities. No surveys
on apprenticeship learning reflecting their breakthroughs in
the learning field have been conducted yet. In this paper,
we use the human learning paradigm to motivate the review
of the current status of learning in robotics. Specifically, we
focus on apprenticeship learning methods and its strengths
in opposition to traditional learning approaches. By analysing
some of these works we exhibit its potential for providing robots
with enhanced autonomous capabilities. To conclude we discuss
current limitations in the apprenticeship learning development
and mention promising areas for future research.

Index Terms— Robot Learning, Intelligent Robots, Au-
tonomous Systems, Reinforcement Learning, Learning by
Demonstration, Inverse Reinforcement Learning, Transfer
Learning.

I. INTRODUCTION

Real-world robots are required to perform their tasks in
human-like environments. This fact has lead to an increase
of interest in the development of systems such as robotic
legs, prosthetic hands, robotic arms and, on a larger scale,
humanoid robots. Nonetheless, with humanoid robots arise
many technological challenges. Bohren et al. discusses that
endowing a humanoid robot with autonomy requires the
integration of many complex subsystems such as percep-
tion, reasoning, navigation, motion planning and grasping,
among others [10]. Even though these components have been
extensively validated individually during the last decades,
integrating them into a robust functional system is still an
active area of research.

Traditional approaches governing these complex systems
require a great understanding of the model underlying the
system’s behaviour. Even though deriving an accurate model
is possible for some systems, approximations are commonly
used in order to make the calculations computationally
tractable, despite the trade-off of the model’s accuracy. Fur-
thermore, these models might also require hand-defining all
possible scenarios, movements, tasks and extensive manual

1Robotics Lab, School of Mathematical and Computer Sciences at
Heriot-Watt Univeristy, UK.

Fig. 1: This work focuses on apprenticeship learning, i.e.
the interaction between self-learning and social learning
techniques for robotics.

tuning of the system’s control architecture [8]. Therefore,
this traditional approach lacks scalability and generalisation.

With the popularisation of artificial intelligence (AI), more
natural methods for robot learning have been adopted, re-
ducing the laborious task of coding every possible scenario
and thus, increasing modularity and flexibility on the sys-
tems. This allows non-robotics-experts to interact, teach and
modify the robot’s behaviours [38]. In an attempt for these
systems to work in a more human-like manner they involve
learning from (and as) humans, especially when learning
motions, i.e. the kinematics, dynamics and constraints de-
scribing the functionality of the robot’s actuators. In the
recent years, this has become an important research topic
in the robotics community.

Given the expertise of humans in interacting with the
environment, it is natural to study humans’ motions to use
the resulting knowledge in robotic control. In this survey,
we review different approaches for robot task learning using
as motivation and analogy the human learning paradigm:
demonstrations, practice and sharing [19]. We generalise
this paradigm with two learning alternatives: social learning
and self-learning. The integration of both approaches on an
agent results on apprenticeship learning (see Figure 1). This
analogy makes this survey different from machine learning-
based papers that exclusively review the state-of-the-art on
general human-robot interaction (HRI) [15], specific meth-
ods for programming intelligent systems [7], self-learning
techniques (reinforcement learning (RL) [23, 25]), social
learning techniques (learning by demonstration (LbD) [2, 8],
and transfer learning (TL) [49]), among others. Furthermore,
despite the difficulty of defining a boundary between ma-
chine learning and the control theory, modelisation theory
and purely control-based approaches are outside the scope
of this review. Excellent surveys in these subjects can be
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found in [11, 37, 42]. Instead, this article emphasises the
contributions and advantages of hybrid learning techniques,
i.e. apprenticeship learning, to provide an overview of a new,
growing area of research.

The remainder of the paper is structured as follows. The
human learning paradigm that motivates this paper as an
analogy of the current state-of-the-art about apprenticeship
learning in robotics is stated in Section II. Then, Section III
introduces the foundations of apprenticeship learning, fo-
cussing on their individual strengths and flaws. Section IV re-
views and categorises existing approaches on apprenticeship
learning. Finally, some conclusions and interesting future
works are discussed in Section V.

II. LEARNING PARADIGM

The current state-of-the-art of learning in robotics keeps
some similarities to the way in which humans and animals
learn. The latest has been extensively studied in many fields
such as psychology [13], pedagogy [30], biology [31] and
neuroscience [33], among others. At the same time, each
field has different theories about the learning in biological
systems. In this section we introduce the analogy of the learn-
ing concept from a biological point of view (see Section II-
A) with the current state-of-the-art about learning in robotics
(see Section II-B). Furthermore, we introduce some notation
to formalise the paradigm in the robotics context.

A. Learning in Animalia

Humans and animals (agents) evolve over the years thanks
to the inherent capacity of learning. From a biological
understanding, an agent acquires knowledge by interacting
with other agents and develops knowledge from own expe-
riences [19]. These learning capabilities let an agent learn
what other agents know and also, to master a specific skill
by practising it. Formally, we can distinguish the following
individual approaches of learning:
• Self-learning: experimentation with the environment

provides agents with some feedback about the suitability
of their actions. It is also referenced as associative
learning, asocial learning and individual learning.

Fig. 2: Learning paradigm in robotics. Both social and self-
learning can have an influence on the robot learning, i.e
model of the task encoded in a policy π. Adapted from [2].

• Social learning: interaction with external agents and
observation of other’s actions provide agents with exam-
ples of what, when, how, and why to do a task. It is also
referenced as observational learning and group learning.
Therefore, there are two concepts in social learning:
– Adoption: perceived knowledge might be sufficient

to use it as it is. Thus, it is adopted without the need
of understanding.

– Imitation: perceived knowledge needs to be under-
stood in order to replicate it. Thus, it needs to be
processed and generalised.

Any of the previous individual learning approaches can
allow an agent to obtain the skills perform a task. However,
it is known that humans and animals use these approaches in
conjunction. This modular structure broadens the alternatives
for learning, being able to make any possible combination of
the individual learning resources. In order to clarify this idea,
let’s analyse a typical real-world scenario: A coach teaches
to three students how to score in basketball, let’s call them A,
B and C. After some demonstrations, each student builds an
understanding of the basketball rules and technique. Student
A grasps concepts correctly and is able to score straightaway
from any part of the court. Student B got the rules and an
intuition of how to technically proceed, but he/she needs a
bit of practice before being skilled enough. Instead, student
C neither understood the rules nor the technique, and even
after some hours of self-study, is unable to score. Because
of that, he/she asks for help from classmates and as a result
builds an understanding of the rules allowing him/her to
progress during self-study. To settle the new ideas, he/she
asks to validate the technique with the coach.

As exemplified in the previous scenario, the process of
learning and teaching among humans can be extremely
complex and challenging: lack of examples, misunderstand-
ings, loss of information and incapacity of self-learning
are just some of the difficulties that humans might face in
the learning process. Considering that the human learning
process is of such sophistication that it took million of years
of evolution to develop, it is understandable that replicating
this process in robotics is such a struggle. Actually, because
learning in robotics has taken great inspiration from learning
in humans and animals, some of the previously mentioned
challenges are also present in the field.

B. Learning in Robotics

Similarly to the learning paradigm in humans and animals,
robotics agents also interact with other agents (social learn-
ing) and practice (self-learning) to gather and improve their
skills. In a formal way, the learning paradigm in robotics
(see Figure 2) consists mainly of three components:

• World: the environment is composed by states s ∈ S.
Any agent can interact with it through actions a ∈ A.
A mapping between states by way of actions is defined
by a probabilistic transition function T(s′ | s, a): S ×
A × S → [0, 1]. This transition function T determines
the dynamics of the system being controlled [42].
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• Agent: the agent’s actions given a state are commanded
by a model or policy π: S → A. The new state s′ is
assumed to not be fully observable, but an agent instead
has access to the observed state z ∈ Z , through the
mapping M: S → Z . The agent might also get a rein-
forcement signal r ∈ R which evaluates the suitability
of its actions, i.e. the policy π.

• Teacher: the teacher might provide to the agent a set
of demonstrations dj ∈ D consisting on kj pairs of
observations and actions: dj =

(
zij , a

i
j

)
, where zij ∈ Z ,

aij ∈ A, i = 0 . . . kj . This step involving HRI might
raise some challenges depending on the technique used
to teach the robot [2].

Further to these three components, there is an additional
one called the interpreter. It reports with a reinforcement
signal r ∈ R the suitability of the new state s′ (or new
observation z′) as a result of applying a in s. The interpreter
could be an external observer or an internal function from
the agent. Thus, the observability of the states might differ
depending on the nature of the interpreter. An interesting
discussion of reward function origins can be found in [44].

The similarity of learning in robotics is not only in the
interaction between the environment and the agents, but also
in the way that robots can learn. Robots can not only learn
from demonstrators and ask for help when needed (social
learning) and from their own exploration (self-learning), but
also they can make use of both approaches when needed.
Then, the previous examples with robots instead of human
students would analogously imply: (a) robot A would sat-
isfactorily learn a policy π from human demonstrations D
using social learning techniques which lets it score from any
part from the court, (b) robot B would partially derive a
suitable policy π from human demonstrations D using social
learning techniques and would improve the policy π with
self-learning techniques until the reward r is favourable, i.e.
success rate when trying to score from any position of the
court, and (c) robot C would derive a useless policy π from
human demonstrations D using social learning techniques,
which even after some trial and error on the court (self-
study) does not converge to a useful policy, for what it needs
is to adopt other’s policies and new human demonstrations
to correct and generalise the understanding.

The paradigm set in this section establishes the route
for reviewing the state-of-the-art about learning in robotics.
While most of the techniques uniquely explore some of the
presented interactions between agents [38], there is some
work that exploress two or more interactions, i.e. undertaking
the apprenticeship learning approach. As it will be seen,
this latest approach leads to a more effective teaching and
learning techniques.

III. APPRENTICESHIP LEARNING FOUNDATIONS

Apprenticeship learning stands on social and self-
learning’s shoulders. Thus, all the respective methods’
strengths, limitations and challenges become the founda-
tions of apprenticeship learning. Following the already in-
troduced learning paradigm and notation, the principles of

self-learning and social learning techniques are respectively
explored in Section III-A and Section III-B.

A. Self-learning

An invaluable source of knowledge is one’s own experi-
ences. The outcome of one’s previous actions when facing
a specific situation give an intuition (feedback) of one’s
performance. This feedback then allows for the reaction
method to adapt to successfully achieve a specific goal. The
first approaches to emulate this behaviour in machines were
using auto-tunable control algorithms back to the 1950s.
However, it was not until the late 80s, with the appearance
of machine learning, that control theory matured to conceive
of adaptive control [12, 45]. Details of this approach are
outside of the scope of this paper, but an excellent review
can be found in [3].

According to Sutton et al., adaptive control evolved into
what is now know as reinforcement learning (RL) [47]. Its
beguilement lies in letting agents explore the policy π which
leads them to accomplish a task without the need to implic-
itly specify how it needs to be achieved. Instead, the agent
obtains reinforcements r ∈ R (either positive or negative
reward) depending on the suitability of its actions within the
task meant to be learnt. A more extensive explanation of
RL’s theoretical basis can be found in [23, 25].

There is an innumerable amount of research using RL
that has succeeded in letting robots learn by themselves.
However, this approach also faces challenges and limitations
such as the following:
• Lack of generalisation: RL approaches typically do

not generalise their knowledge over the state-action
space. Thus, demonstrations must be provided for every
discrete state. This lack of generalisation over the state-
action space leads to the well-known exploration vs.
exploitation dilemma.

• Struggles with continuous spaces: RL was originally
conceived for discrete spaces. Even though some work
deals with continuous tasks, discretisation of the space
is the most preferred approach.

• Curse of dimensionality: the data and computation
needed to cover the complete state-action space increase
exponentially as the dimensionality of the system and
discretisation resolution increase. The term “curse of di-
mensionality” was coined by Bellman back in 1957 [4].

• Exploration with real systems: RL needs to explore
the state-action space. Physically executing all actions
from every state is likely to be infeasible, dangerous,
and not to scale with continuous state spaces [2].
Moreover, robots might suffer from wear and tear.

• Reward function modelisation: defining a reward
function to correctly guide the system as to which
actions suit the task meant to be learned is not always
obvious. Inaccurate reward functions can lead the sys-
tem to not learn.

A common consequence of all previous issues is the
long exploration time when RL is applied on real robotic
systems. This is often characterised by high dimensional state
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and action spaces, due to the many degrees of freedom of
modern robots. Some authors have dealt with this by looking
at lower-dimensional space representations of the problem.
However, this form of a state dimensionality reduction
severely limits the dynamic capabilities of the robot [25].

Learning in a reasonable time-frame is essential to over-
come the cost of getting experience on a real physical
systems. Therefore, suitable approximations of state, policy,
value function, and/or system dynamics are used as an
alternative. Another option is to let the system learn in a
simulated environment. However, for highly dynamic tasks,
small modelling errors can lead to substantially different
behaviours. Hence, the algorithms need to be robust against
these models that do not capture all the details of the real
system, i.e. uncertain models or undermodeled systems.

Defining a reward function that quickly guides the learning
system to succeed on a specific task can also help to cope
with the time-frame problem and thus, make RL suitable for
real-world tasks. This issue is called “reward shaping” [29].
Specifying an effective reward function in robotics can be
a non-trivial issue. An alternative to address this is inverse
reinforcement learning (IRL) [41], where the reward function
is learned rather than hand-defined.

In the context of this survey, IRL is seen as social learning;
by leveraging the other’s knowledge, a system can extract the
concept of what is good or bad, i.e. the reward function.
This is not the unique example of how self-learning can
benefit from social learning. More hybrid approaches will
be reviewed in Section IV.

B. Social Learning

Living creatures also learn from their neighbours. Others’
knowledge can help in acquiring a new skill by understanding
its utility, physics, rules, etc. Thus, it is natural that the
learning interactions in animalia, i.e. social learning, serve
as an inspiration in robotics. First approaches emulating this
behaviour were using inverse optimal control (IOC) back
to the 1960s. Its enchantment lies in finding a metric such
that a known trajectory through a state space is optimal
under the same metric [24]. Even though these control-based
methods are still extensively used [6, 34], the popularisation
of machine learning on the late 80s brought some alternatives
such as learning by demonstration (LbD), inverse reinforce-
ment learning (IRL) and transfer learning (TL), to ease the
manual programming of robots and to automate the tedious
parametrisation tweaking.

Social learning in robotics can occur between robots
and/or between a human and a robot. This is similar to the
human learning paradigm (see Section II), where learning
can be conceived in two hierarchical directions: vertically
(when a task is learnt from a teacher), and horizontally (when
a task is learnt from other learners). In either case, this
learning methodology allows learning two concepts from an
external source: what are the physics of a task? and what
are the accepted actions during the performance of a task?.

LbD is a subset of supervised learning which attempts to
get the physics of a task. LbD is used to transfer knowledge

from an expert to a machine, rather than analytically de-
composing a problem and manually programming a desired
behaviour [8]. A LbD process is threefold: (i) a set of demon-
strations d ∈ D of a specific task is acquired from a teacher
demonstrator, (ii) a model or policy π is derived to generalise
the demonstrations, and (iii) the learnt task is executed by
repeatedly performing some action a ∈ A, which is dictated
by the built policy after getting an observation z ∈ Z of the
system’s state s ∈ S.

Given the increase of robots in common places, LbD
brings a set of possibilities for HRI which allow non-
robotics-experts to interact/teach robots [2]. Furthermore,
teaching through demonstrations becomes more natural and
an intuitive medium for communication from humans rather
than programmatically defining what is the desired task. This
approach has the practical feature of focusing the dataset on
areas of the state-space that are actually encountered during
the task execution.

IRL [41] was originally designed to deal with “reward
shaping” issue [29]. This relates with the hardness of
having to hand-define a reward function. Instead of mod-
elling/defining such a function, IRL aims to extract it by
observing an external agent performing the task meant to be
learnt. This technique can extract the concept of desired and
undesired actions when doing a task, i.e. the reward function.
Similarly, it can be useful to also extract the parameters
for control policies or the models from the demonstrations.
Because of the interaction with external agents, in this survey
we consider IRL as a type of social learning instead of a
subfield of RL [2].

In order to derive the reward function from external
demonstrations, IRL relies on the design of a suitable feature
extractor. In other words, an algorithm which is able to
capture the important aspects of the task in the problem
space. Designing such function requires insights not much
different from the ones that are required to design the actual
reward function. Moreover, when deriving a reward function
through IRL, there is no guarantee that the obtained reward
function is the same as the one followed by the demonstrator.
It will only be one that suits the provided demonstrations.

TL is a technique in machine learning which allows to re-
use or adopt any already acquired knowledge. In this work,
we distinguish two levels of TL:
• Across tasks: when generalization occurs not only

within tasks, but also across tasks [49]. Generalisation
in LbD is about repeating the same task in different
conditions. Instead, TL also cares about transferring the
knowledge to similar tasks, i.e. across tasks.

• Across agents: traditional learning approaches have
focused on the problem of a single robot being taught
by a single teacher [2]. However, horizontal learning
between learners can benefit the group of robots to learn
complex tasks by sharing their own experiences, i.e.
models/policies.

As an example, robot A has learnt task A. Robot B is
supposed to execute task B, which is similar to task A. In this
context, TL is needed in both levels: across tasks and agents.
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Because of that, we categorised TL to be as social learning.
This approach not only faces the challenges in the other
learning techniques, but also in multi-robot coordination:
issues of action coordination, communication, noise in shared
information, and different physical embodiments between
agents. However, letting agents to interexchange information
provides an interesting alternative to speeding up the learning
process and generalisation across agents.

TL also brings the possibility of learning unobservable
features from one’s own. Exchanging information between
agents with different perception sensors and computational
capabilities lets the overall system be more dynamic. This
allows ill-equipped robots to acquire knowledge that would
not be in their capabilities otherwise. On the downside, the
agents grow a dependency on the other’s capabilities.

There is a great amount of works benefiting from acquiring
knowledge from external observations, either with LbD,
IRL or TL. However, those approaches come with some
challenges and limitations such as the following:
• Different agent’s morphologies: some HRI approaches

to record the demonstrations might emphasize the
anatomical differences between agents, either the
teacher and the learner (in vertical transfer knowledge),
or between learners (in horizontal transfer knowledge).
This is known as the correspondence problem [36]. This
issue deals with the identification of a mapping between
the teacher and the learner which allows transferring of
information from one to the other. An explanation of the
required mappings, HRI acquisition approaches, and the
generalisation challenge can be found in [2].

• Lack of task generalisation: LbD already provides an
example of a good approach to undertake a specific task.
This, however, might scale poorly to some new environ-
ment setup, where the context is dissimilar to the one of
the demonstration. Billard et al. exemplify this situation
with a dynamical system which is able to readjust a
manipulation task with different starting/target locations
from the ones shown during the demonstration [8].
However, this approach would not scale when placing
a large obstacle in the robot’s path.

• Limited performance: a model or policy learnt from
external sources can only be as good as the one provided
by the demonstrations. Consequently, the learner perfor-
mance is heavily limited by the quality of the dataset.
Argall et al. mention that poor learner performance can
be due to: (a) dataset sparsity, or under-demonstrated
areas of the state space, and (b) poor quality of the
demonstrations, which can result from a teachers in-
ability to perform the task optimally [2].

The major limitation of social learning is the need of
resemblance between agents or resources to map the agent’s
capabilities. Related to that, a policy and reward function
extracted by observing demonstrations have to be linked in
the same way as they are demonstrated [1]. This creates an
extra link further from the previously mentioned challenges.

Social learning can benefit from self-learning to ease its
limited performance: a policy initially learnt by demonstra-

tion can be enhanced using RL. This is not the unique way
of how social learning can benefit from self-learning; other
hybrid approaches are reviewed in Section IV.

IV. APPRENTICESHIP LEARNING REVIEW

Apprenticeship learning brings together the best of two
worlds: self-learning and social learning. This makes robotics
closer to the animalia learning paradigm, where a skill can
be acquired from an expert and then mastered with practice.
Additionally, integrating both paradigms allows each of
them to mitigate the others shortcomings at the same time
of improving the overall learning quality [16]. Thus, the
resulting learning framework becomes enhanced in terms of
capabilities, adaptability and generalisation.

Bearing in mind the drawbacks of using some learning
techniques (see Section III), this section starts by describing
some of the existent methods in apprenticeship learning to
deal with different agents’ morphologies (see Section IV-A).
It then overviews different approaches for avoiding engineer-
crafted reward functions (see Section IV-B). Then, it provides
an insight of how self-learning can be guided using social-
learning techniques (see Section IV-C). Finally, Section IV-
D overviews the enhancement on generalisation and perfor-
mance when using apprenticeship learning frameworks.

A. Agent Differences Adjustment

Letting an agent practice a specific task might help short-
ening the teacher-learner perception and kinematic differ-
ences (see Section III-B). These discrepancies do not only
arise because of the different agents’ anatomical structure,
but also due to the HRI setup used for the communication
between agents. This fact is known as the correspondence
problem [14, 36] and supposes a challenge to make the
collection of state-action pairs recorded during the demon-
strations usable by the learner. In fact, this turns to be crucial

Fig. 3: Bentivegna et al. teaching a humanoid robot to play
air-hockey. With the learnt model, the robot does 200 straight
shots. When it processes the outcome of the trials (shots
201−300), it eventually improves its skills [5].
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Fig. 4: Silver et al. highlighted the importance of the reward (cost) function on a robots behaviour. As the environment’s
harshness increases (from left to right), more complex parametrisations are required. In such environments, the tuning of
the reward function can drastically affect the robot’s behaviour [43].

for being successful in the learning process [2]. In an attempt
to overcome this issue, many alternatives have been proposed
in the LbD field to facilitate the mapping challenges. These
solutions are out of the scope of this survey, nonetheless, an
excellent overview of them is available at [2, 36].

An example of this challenge is reported in Nakanishi
et al.. They aimed to learn biped locomotion from human
demonstrations. However, they did not succeed because
the kinematic differences between the teacher and the real
humanoid were too noticeable. Thus, they finally got the
demonstrations from an already existing successful robot
locomotion [35]. Even though they found an alternative to
avoid the correspondence problem, this approach might not
always be doable. Instead, one could shorten the difference
between embodiments with a simulated model of the system,
avoiding the cost of self-learning in real robots. However, the
differences between simulators and real robots can still sup-
pose a challenge. Bentivegna et al. compensate the kinematic
differences between a human demonstrator and the real robot
when playing air-hockey (see Figure 3) in two stages. First,
simulated system masters the learn task without the cost of
running the full robot setup. Second, the resulting model is
transferred to the real robot which is used as a basis for
another self-learning stage [5]. This approach not only lets
the robot to leverage from the human demonstrations but also
to master its skills in a safe way.

Because the kinematic differences are strongly coupled
with the acquired skills, it is not always obvious when the
system is smart enough to generalise any task. Gräve et al.
implemented RL and LbD as two alternative control flows
for learning and executing grasping behaviours. Whenever
there is enough knowledge to safely proceed on the required
task, the RL module will drive the system to succeed
on the task at the same time of improving the policy in
terms of both quality and kinematic differences. Otherwise
new demonstrations are required [16]. Similarly, Ross et al.
dealt with the assumption that experts always give correct
demonstrations, which makes the learning quality dependant
from any mistake that the learner might commit, and any
recording and/or communication problem between agents. To
address this issue, they acknowledge a continuous input flow
of demonstrations, allowing them to update the policy with

the most suitable state-action pairs [40]. These two novel and
alternative approaches are further discussed in Section IV-C.

B. Reward Function Acquisition

Deriving the reward function using IRL [41] becomes
an alternative to deal with the “reward shaping” [29] is-
sue introduced in Section III-A. This approach consists in
learning from external observations which behaviours are
satisfactory when performing a task, i.e. the reward function.
Other options in between engineer-crafted and learnt reward
functions are reward function adoptions (transferred from
another agent) and processing external reward signals. Even
though this approach involves multi-robot cooperation or an
additional HRI system, successful examples undertaking this
former approach can be found in [32], and the latter approach
in [16, 17, 22]. There are several successful applications of
IRL, some of them being completely decoupled from the
reviewed apprenticeship learning literature but still a source
of inspiration documented in [25].

In either case, the reward function or signal serves as
guidance to shape up the policy during a self-learning
process. Even though the reward function might correctly
guide the learning process, there are no guarantees that
the learnt reward function is exactly the same underlying
the expert’s demonstrations [1]. Silver et al. discuss the
importance of the reward function since it can drastically
compromise the system’s behaviour (see Figure 4). Thus,
special attention must be taken when learning the reward
functions from external agents, even more acknowledging
that this method is also sensible to the aforementioned
correspondence problem [36].

In between control-theory and the apprenticeship learning
paradigm, Hwang et al. learnt the whole body dynamics of
the Saika-3 humanoid robot [27] to acquire manipulation
skills. This was achieved via self-learning cooperative motion
using a simple genetic algorithm (SGA). In this context, the
main body and the arms are considered different agents,
which try to minimise the overall used energy but while
cooperatively succeeding on the task [20]. A step towards
apprenticeship learning was done by Abbeel and Ng, which
formulated an MDP\R (Markov decision process (MDP)
without reward function) to iteratively adjust the policy
underlying the system’s behaviour accordingly to the reward
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Fig. 5: Ratliff et al. learnt reward functions for making the
Boston Dynamics LittleDog quadruped robot walk. The func-
tion includes the learnt kinematic feasibility and the learnt
terrain costs over a depth-map. Low costs are indicated with
bluish shades and high costs with reddish shades (high) [39].

function being guessed from the expert demonstrations.
Interesting results were reported in a car driving simulation,
where the algorithm was able to learn different driving styles
without any previous definition of the reward function [1].

Related to reward function derivation, some works have
focused on learning cost functions which could then be used
in a learning framework. For instance, Ratliff et al. learnt
from human demonstrations how to score each action within
a multi-class classification framework. They not only tested
their approach to grasping behaviours, but also in quadruped
locomotion. For the latter scenario, they learnt the kinematic
constraints and the costs related to the features of the terrain,
using the overall cost function to plan the next step [39] (see
Figure 5). Similarly, Silver et al. learnt terrain cost functions
from human demonstrations to reduce development efforts
and to increase the overall performance of the system. Their
approach was tested in a Crusher autonomous navigation
platform [46] to make it navigate at the lowest cost through
complex unstructured terrains [43].

C. Learning Exploration Guidance

Guiding the exploration of a self-learning approach might
ease its difficulties of dealing with high-dimensional or/and
real systems (see Section III-A), and reduce the learning
time [16]. The system can be guided with hand-crafted
policies or models derived from demonstrations. The former
requires expertise and knowledge about the system to model
it, becoming a non-trivial task. This issue is similar to the
one of engineer-crafted reward functions (see Section III-A).
The latter relies on the quality of the demonstrations, making
the overall framework vulnerable from any error in the ac-
quired model [40] (see Section IV-A). In between these two
approaches, simulating human behaviours using sub-optimal
controllers seems to be a suitable alternative [17, 40, 50].
This avoids inconsistencies associated with human users and
lets the initial policy be just close enough to the desired task
but still imperfect to let the self-learning algorithm improve
the model. Similarly, some authors acquired demonstrations
from already working systems [28, 35].

In either case, the obtained model can be used at different
learning stages: (1) policy initialisation and/or (2) policy’s
evolution evaluation. These approaches, which might be used

together, prevent the self-learning algorithm undertaking a
greedy exploration of the entire state-action space.

1) Policy initialisation: knowing an initial model might
help to overcome some of the aforementioned limitations.
This initial model already contains what actions to perform
in the states encountered in policy and allows the learner
to improve it by locally optimizing it. However, this implies
that only local optima close to the initial policy can be found,
making the learning procedure dependant of the provided
policy. In other words, this technique becomes only useful
when the context for the reproduction is sufficiently similar
to that of the initial policy [8]. An alternative to this issue
is proposed by Ross et al.; they batch the demonstrations
over iterations, providing a no-regret online learning which
reduces the learning scope to the most suitable demonstra-
tions while still having strong performance guarantees [40].
However, this approach requires a continuous input of data,
i.e. initial policy candidate.

A classic but practical approach to policy initialisation
is provided by Silver et al.. They learnt terrain cost func-
tions from human demonstrations to reduce development
efforts and to increase the overall performance of the system
shown in Figure 4. For that, a maximum margin planning
(MMP) was used to learn a cost function from the demon-
strations [43]. Yet another real-world example but with a
humanoid robot consists on providing some demonstrations
to the robot, so it can start a self-learning procedure already
knowing how to repeat a task with various starting and goal
points [18]. In the same lines, Bentivegna et al. showed a
humanoid robot how to play air-hockey so then it could then
master its skills (see Figure 3). Results not only in this work
but also in Taylor et al. show the importance of providing
some initial examples about the task [5, 50].

Improving an initial policy leads to better results when
it has been learnt by demonstration rather than hand-
defined [50]. However, learning a policy might not always
be possible, for what there might be hybrid approaches such
as getting information from already functional robots. In
this regard, Latzke et al. transferred the knowledge from a
similar robot to speed up the learning process, thus reducing
the required own trial and error to master a fundamental
soccer skill [28]. Likewise, Nakanishi et al. leveraged the
experience of another robot with successful robot locomotion
in order to learn biped locomotion in a new system. This
initial knowledge served as a basis to improve the robot’s
locomotion capabilities with control-based algorithms [35].

2) Policy clarification: there are situations in which a
self-learning approach might require more data. In these
scenarios, an algorithm can benefit from actively querying
the teacher for additional demonstrations when needed. Such
a method guides by reinforcement the policy that is being
learnt. At the same time, this approach opens a new win-
dow for HRI, where an agent can be reinforced in more
natural ways. For example, Grollman and Jenkins avoids au-
tonomous exploration during the learning process by highly
interacting with the robot. They use mixed initiative control
(MIC) to acquire initial demonstrations, get the feedback

Chapter A: Apprenticeship Learning: A Survey 52



Fig. 6: Guenter et al. explored self-learning techniques to
let HOAP3 adapt to a new situation (sudden appearance of
an obstacle in the middle of the learnt trajectory) where the
demonstrations (green line) do not help to fulfill the task [18].

from a human and incorporate additional examples of the
correct control policy. They called this approach dogged
learning (DL) [17]. Instead of a continuous interaction,
Gräve et al. checks the uncertainty of the derived model to
determine if there is sufficient information to safely execute
the task. In case of the risk being too high, new examples
are asked to a human expert to fulfill the current task [16].
Similarly, Jansen and Belpaeme focused on goal-oriented
learning, inferring the policy of a demonstrator by observing
its movements, executing the guessed hypothesis and waiting
for some feedback about the learning performance. [22].

Alternatively to human guidance, robots can cooperate to
the same end by interchanging reward signals to guide the
policy learning. An interesting work is the one of Tan, in
which they compared the performance of cooperative agents
against individual agents. They found out that multi-agent
learning initially captures knowledge slower, but at the end,
they outperform individual learners [48]. A practical work
is the one of Mataric, which used cooperative learning to
enhance the performance of the overall population of agents.
For that, agents were interchanging local reinforcements
and sending perception data to reveal hidden states. Hence,
reducing the need for self-exploration when learning the map
between perception and actions [32]. Billard and Dautenhahn
also showed that behavioural social mechanisms speed up the
grounding of exteroceptions [9].

D. Generalisation and Performance Enhancement

Iterating over an initial model lets an agent improve
the performance and generalisation of such a skill (see
Section III-B). This is remarkably important because the
performance of a system which uniquely learns from demon-
strations is limited by the capabilities of the teacher [2].
Instead, this approach allows surpassing the abilities of
the demonstrator [50]. Apart from that, the generalisation
capabilities of an agent are limited to similar scenarios to the
demonstrations. For instance, Gräve et al. state that a policy
purely learnt through social learning is still too constraint for
grasping behaviours [16].

In the context of apprenticeship learning, the generalisa-
tion issue is usually tackled using reinforcement learning,
e.g. [16, 18, 22]. For instance, Guenter et al. first encodes

the model underlying some human demonstrations. In order
to make the system adaptable to different scenarios, a RL
module is used to adapt the policy to new environments.
They tested their approach in a humanoid robot which had
to grasp objects in unseen positions and put them into a
box, even with the presence of unseen obstacles in the
middle of the demonstrated trajectories [18] (see Figure 6).
Similarly, Gräve et al. leverage self-learning to generalise
the system’s knowledge to new grasping scenarios [16]. A
slightly different approach is the one adopted in Jansen and
Belpaeme. They focused on goal-oriented learning to infer
the policy underlying the demonstrator’s behaviour. Because
generalising intentions can be challenging, after observing
the teacher and executing the guessed hypothesis, the system
received some external feedback at the end of each trial [22].

The hybridisation of a social learning approach with a
self-learning technique not only improves the generalisation
capabilities, but can also enhance the overall performance
of an already known skill. In this regard, Kober et al. first
provided kinaesthetic guiding to a simulated anthropomor-
phic SARCOS arm to complete the Ball-in-a-Cup game to
then let the system practice the new skill. In this work, the
self-learning was not only essential to succeed on the game
but also to perfect the movement of the ball [26]. Again,
the modelisation of the reward function plays an important
role on what its being mastered. For example, Yoshikai et al.
tweak the reward function so the whole body tendon-driven
humanoid Kenta [21] can learn that is supposed to mimic
the posture of a demonstrated human hand and then master
such an imitation [51]. Also, Bentivegna et al. resort to a
self-learning approach to enhance the performance of the
demonstrator when playing air-hockey (see Figure 3). Results
show that letting the robot practice by its own is equally
important as providing some initial knowledge about the
task [5]. The same moral is stated in Taylor et al..

In contrast to individual self-learning approaches, en-
hancement of an initial policy can also be achieved with
cooperative systems. Multi-agent learning can speed up the
learning process. A population of agents can copy, mimic and
share information with each other so that they learn control
policies by making experiments themselves and by watching
others. Using genetic algorithms, Hwang et al. considered
the different extremities of a simulated humanoid as different
agents to minimise the overall spent energy when coopera-
tively succeeding on a manipulation task [20]. Already in the
apprenticeship learning field, Mataric evolved the behaviour
of an overall population of agents by means of a common
reward function [32]. As stated in Tan, the price of this co-
operation is worth because, in long term, cooperative agents
outperform individual learners. They exemplified this fact
by sharing sensations, sharing episodes, and learned policies
between hunter agents which sought to capture randomly-
moving preys [48]. This performance enhancement is the
result of combining some of the previously seen strengths of
the apprenticeship learning approach. Rewards are obtained
from one own and other’s experiences (see Section IV-B) and
by letting this signals and other’s policies guide (initialise
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and clarify) one’s own policy (see Section IV-C).
Enhancing the generalisation capabilities and/or system’s

performance requires practice from a self-learning module.
As discussed in Section III-A, this exploration usually be-
comes prohibitively unsafe on real-world setups [2]. Al-
ternatively, many works in this fields conduct self-learning
approaches in simulated environments in order to test the
performance and generalisation enhancement of an initial
policy [1, 5, 22, 26, 39, 40, 50]. According to Taylor and
Stone, ideally, the agent could learn a specific behaviour
by exploiting its own model in simulated environments to
then transfer the knowledge to the real robot and directly
interact with real-world scenarios [49]. This step of learning
on the simulated system is often called “mental rehearsal.
Even though this promising alternative, such an approach
requires extracting a precise model from both the agent and
the environment, the challenge of which have been discussed
in Section IV-C. Even though Kober et al. provide a full
discussion of the challenges of “mental rehearsal” [25], it
is important to bear in mind that small model errors due
to under-modelling can make the simulated learning diverge
from the required one for the real-world system. Under these
circumstances, a direct transfer of knowledge might only
succeed in limited applications. Acknowledging this fact,
letting the real robot practice the new acquired skill is still
essential to master a task [18, 28]. In any case, simulation
becomes an interesting alternative to go through in order to
narrow the gap between biological systems and real robots.

E. Summary of Works

Comparing apprenticeship learning frameworks is chal-
lenging because (a) not all works aim for the same improve-
ment with respect to the shortcomings defined in Section III,
(b) the testbed applications differ with the requirements, and
(c) different robots are used, which have different sensoricep-
tion and motion capabilities. Aiming to provide the reader
with a useful and quick guide to identify works of potential
interest, Table I summarises some of the aforementioned
works, for which six features have been selected:

• Learning media: interaction method for social learning.
• Learning support: mathematical encapsulation of the

model underlying the application of interest.
• Learning refinement: acquisition of the reward signal

for self-learning.
• Learning techniques: highlight of the used techniques,

either learning-based (LbD, TL, IRL, RL) or others
(control-based approaches, genetic algorithms, etc).

• Application: objective task/skill to be learnt/acquired.
• Learner: learning target, emphasising either in simula-

tion or real-world.

Acknowledging the impossibility of embedding all in-
formation in this table, the section where each work is
mentioned is indicated underneath the references. The reader
will find in there the interest, contribution and peculiarity of
each work.

V. DISCUSSION

In this review paper, we have seen that learning in robotics
has been strongly inspired by the human learning. Although
this paradigm has been pursued for many decades, the
current state-of-the-art on robotics learning is the legacy of
advanced control-based approaches developed in the early
80s. Mainly, two learning strategies prevail in the literature:
self-learning and social learning. Due to the imminent (if
not yet) matureness of these techniques, an emerging field
of research hybridises social and self-learning to mitigate the
others weaknesses, at the same time of improving the overall
learning quality. In an attempt to formalise this concept,
usually named apprenticeship learning, this paper has first
reviewed the shortcomings of traditional learning approaches
to then provide an insight to some of the most outstanding
works in the apprenticeship learning field.

Current works in this field have done a step forward in AI
by obtaining more autonomous systems; fewer modelisation
requirements, extended generalisation capabilities and in-
creased learning rate, are only some of the advantages of this
novel learning technique. Though apprenticeship learning
has proven promising advances, there is a long way to go.
As emphasised in this review, many works uniquely meet
some of these strengths individually. On top of that, they are
presented in particular setups, i.e environments, tasks and
robots. This fact makes difficult to disseminate the advances
in this field among different robotic domains.

Working towards a generic framework should be the long-
term aim of the learning in the robotics community. To
achieve this robustness and generalisation it is essential to
bear in mind the complete human learning paradigm: getting
inspiration from external sources, processing the acquired
knowledge and practising to master a task. Equivalently in
robotics, this implies first learning from humans or other
robots, being cooperatively a natural consideration; second,
generalising the concepts not only along the same skill
but also across others. Finally, consummate expertise by
iteratively testing and evaluating one’s own performance.
Endowing a robot with all these capabilities is the way to
achieve more autonomous systems. However, the majority of
works in the field only happen in simulated environments.
The comfortableness and safeness of developing self-learning
in this context should only be the prior step before transfer-
ring the knowledge to real robotic platforms.

Despite the promising route of this emerging field, ap-
prenticeship learning lacks a standard set of tasks, scenarios
and evaluation metrics. This complicates comparisons across
algorithms and domains. Instead, formalising an evaluation
criterion would facilitate the contrast between approaches
and implementations, at the same time that it would help
driving research and the development of apprenticeship
learning towards general-purpose frameworks. Nonetheless,
this seems to be still a pending subject on the fundamentals
of apprenticeship learning. Thus, interdisciplinary efforts
should be focused on addressing this absence, which would
benefit the learning community in robotics as a whole.
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Reference Learning media Learning support Learning refinement Learning techniques

Abbeel and Ng [1]
(S.IV-B)

Teleoperation in simulation MDP\R Via learnt RF LbD TL IRL RL Oth.
Application: mimic driving styles. Learner: car driving scene (simulation).

Kober et al. [26]
(S.IV-D)

VICONTM motion-capture
setup

Augmented DMP Via hand-defined RF LbD TL IRL RL Oth.

Application: ball-in-a-cup game. Learner: anthropomorphic SARCOS arm (simulation).

Gräve et al. [16]
(S.IV-A, S.IV-B, S.IV-D)

Motion capture rig and a
data glove DMP and GP Via external HE LbD TL IRL RL Oth.

Application: grasp object in random position. Learner: Dynamaid humanoid robot (simulation).

Latzke et al. [28]
(S.IV-C, S.IV-D)

Similar robot and
teleoperation in simulation MDP Via hand-defined RF LbD TL IRL RL Oth.

Application: fundamental soccer skills. Learner: RoboSapien humanoid robot (real).

Ratliff et al. [39]
(S.IV-B)

Teleoperation - Via learnt RF LbD TL IRL RL Oth.

Application: cost maps and grasping metrics. Learner: Boston Dynamics LittleDog quadruped robot, Barrett
Technologies three-fingered hand (simulation).

Silver et al. [43]
(S.IV-B, S.IV-C)

Teleoperation and
exteroceptive sensors - Via learnt RF LbD TL IRL RL Oth.

Application: autonomous navigation. Learner: Crusher autonomous navigation platform (real).

Hwang et al. [20]
(S.IV-B)

- - Genetic algorithm LbD TL IRL RL Oth.
Application: energy optimisation on pushing task. Learner: Saika-3 humanoid robot (simulation).

Tan [48]
(S.IV-C, S.IV-D)

- MDP Via hand-defined RF LbD TL IRL RL Oth.
Application: cooperative prey hunting. Learner: group of hunters (simulation).

Mataric [32]
(S.IV-C, S.IV-D)

- MDP Via shared hand-defined RF LbD TL IRL RL Oth.
Application: cooperative box-pushing and sensor-
actuator mapping.

Learner: two Genghis-II six-legged robots, four IS Robotics
R2e robots (real).

Ross et al. [40]
(S.IV-A, S.IV-C, S.IV-D)

Teleoperation or
near-optimal planner N/S N/S LbD TL IRL RL Oth.

Application: steer a car and succeed in a game. Learner: 3D racing game, Super Mario Bros (simulation).

Nakanishi et al. [35]
(S.IV-A, S.IV-C)

Human walking data DMP N/S LbD TL IRL RL Oth.
Application: learn and adapt biped locomotion. Learner: 5-link biped robot (simulation and real).

Grollman and Jenkins [17]
(S.IV-C)

Hand-coded controllers MIC Via external HE LbD TL IRL RL Oth.
Application: mimicry and ball seeking. Learner: Sony Aibo (real).

Jansen and Belpaeme [22]
(S.IV-C, S.IV-D)

Human demonstrator and
simulation Set of rules Via external HE LbD TL IRL RL Oth.

Application: logical policy inference. Learner: two-dimensional 5-by-5 blocks world (simulation).

Guenter et al. [18]
(S.IV-C, S.IV-D)

Kinaesthetic demonstrations GMM and GMR Via hand-defined RF LbD TL IRL RL Oth.
Application: adaptability on putting an object into a
box and grasping a chess queen on a table. Learner: HOAP3 humanoid robot (real).

Yoshikai et al. [51]
(S.IV-D)

- Sensor-action attention pair Via hand-defined RF LbD TL IRL RL Oth.
Application: human hand posture imitation. Learner: Kenta tendon-driven humanoid robot (real).

Bentivegna et al. [5]
(S.IV-A, S.IV-C, S.IV-D)

Teleoperation in simulation Subgoal-action pair Via hand-defined RF LbD TL IRL RL Oth.
Application: air-hockey and marble maze. Learner: humanoid robot (real), marble maze (simulation).

Billard and Dautenhahn [9]
(S.IV-D)

N/S Sensor-action pair - LbD TL IRL RL Oth.
Application: cooperative localisation. Learner: agents (simulation).

Taylor et al. [50]
(S.IV-C, S.IV-D)

Teleoperation or
sub-optimal controller MDP Via hand-defined RF LbD TL IRL RL Oth.

Application: cooperative ball keeping. Learner: agents in Keepaway (simulated).

TABLE I: Summary of apprenticeship learning frameworks. Oth.: others, usually referring to control-based approaches. RF:
reward function. HE: human evaluation. N/A: not applicable. N/S: not specified.
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Appendix B

iCub Kinematics

Knowing the robot’s kinematic structure is crucial to understand the robot’s control capabilities.

This appendix firstly details the most relevant physical parts of the iCub humanoid robot. After

the hardware description, this appendix gives an overview of the iCub’s software and control.

B.1 Physical Platform

iCub’s kinematic tree is rooted at the middle of the torso (see Figure B.1), where its reference

frame is oriented as follows: x-axis points backwards the robot, the y-axis points laterally to the

right, and the z-axis is parallel to gravity but pointing upwards.

Figure B.1: iCub’s composition and reference frames. (a) iCub’s global reference frame,
(b) iCub’s kinematic tree, (c) reference frames of iCub’s joints.

Figure B.2a and Figure B.2b show the kinematic chain of all the components of iCub attached to

the previously mentioned iCub’s root (see Figure B.1). Not all hardware elements are represented
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(a) (b)

Figure B.2: iCub’s composition and reference frames. (a) iCub’s global reference frame,
(b) iCub’s kinematic tree, (c) reference frames of iCub’s joints.

with respect to this root, but also all control commands, as well as all retrieved data from the

iCub sensors. Describing in detail the whole iCub’s kinematics is out of the scope of this project.

Instead, an understanding of the kinematic composition of the iCub’s arms described below is

fundamental for the research conducted in this thesis.

B.1.1 Arms Constitution

The kinematic chain of the iCub’s right and left end-effector are depicted in Figure B.3a and

Figure B.3b, respectively. As it can be seen, the location of both end-effectors is dependant on

the three torso’s DoFs and the corresponding seven arm’s DoFs. Even though the composition

of both end-effectors looks symmetric, they are exactly not.

The Denavit-Hartenberg convention proposed in [Hartenberg and Denavit, 1964] is considered

to describe the aforementioned end-effector kinematic chains (see Table B.1 and Table B.2 for

the right and left end-effector, respectively). This standard uses four parameters to describe a
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link i, i.e. the relative location of the jth joint frame with respect to the (j − 1)th joint frame:

• Link length ai: distance along xj from Oj to the intersection of the xj and zj−1 axes.

• Link offset di: distance along zj−1 from Oj−1 to the intersection of the ji and zj−1 axes.

di is variable if joint j is prismatic.

• Link twist αi: the angle between zj−1 and zj measured about xj .

• Joint angle θi: the angle between xj−1 and xi measured about zj−1. θi is variable if joint

j is revolute.

(a) (b)

Figure B.3: iCub’s end-effector kinematic chain. (a) Right arm and (b) left arm.

B.2 Software Architecture

iCub’s physical platform is fully controllable through its YARP-based software architecture.

YARP is a free and open set of libraries, protocols, and tools which allows building a robot

control system as a collection of programs communicating in a peer-to-peer way [Metta et al.,

2006]. The wholly decoupled modules and devices communicate with each other through TCP,

UDP, XML, multicast, etc. This endows any YARP-based architecture, such as iCub’s one,

with a high-level of adaptability, making it perfect for long-term development projects. YARP

is written in C++ and is supported by Windows, Linux and macOS.

YARP is similar to robot operating system (ROS) [Quigley et al., 2009], despite the former

states not being an operating system [Metta et al., 2006]. In ROS, each program is a node
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Link i ai [mm] di [mm] αi [deg] θi [deg]

1 32 0 90 (-22 → 84)

2 0 -5.5 90 -90 + (-39 → 39)

3 -23.3647 -143.3 90 -105 + (-59 → 59)

4 0 -107.74 90 -90 + (5 → -95)

5 0 0 -90 -90 + (0 → 160.8)

6 -15 -152.28 -90 -105 + (-37 → 100)

7 15 0 90 (5.5 → 106)

8 0 -141.3 90 -90 + (-50 → 50)

9 0 0 90 90 + (10 → -65)

10 62.5 25.98 0 180 + (-25 → 25)

Table B.1: Denavit-Hartenberg paramters for iCub’s right end-effector. The first three links are
from the torso. The last seven links are from the right arm.

Link i ai [mm] di [mm] αi [deg] θi [deg]

1 32 0 90 (-22 → 84)

2 0 -5.5 90 -90 + (-39 → 39)

3 23.3647 -143.3 -90 105 + (-59 → 59)

4 0 107.74 -90 90 + (5 → -95)

5 0 0 90 -90 + (0 → 160.8)

6 15 152.28 -90 75 + (-37 → 100)

7 -15 0 90 (5.5 → 106)

8 0 141.3 90 -90 + (-50 → 50)

9 0 0 90 90 + (10 → -65)

10 62.5 -25.98 0 (-25 → 25)

Table B.2: Denavit-Hartenberg paramters for iCub’s left end-effector. The first three links are
from the torso. The last seven links are from the left arm.

and communication is established through topics. Similarly, the programs in YARP are called

modules and communicate through ports. Even though iCub’s architecture and YARP are well

documented, there is not any formal comparison between the aforementioned systems.

B.2.1 Arms Control

The Denavit-Hartenberg convention [Hartenberg and Denavit, 1964] is systematic in the choice

of the location and orientation of all reference frames. This allows to represent the link i with
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the same strategy, i.e. a product of four basic transformations:

Ai = Rz,θiTz,diTx,aiRx,αi , (B.1)

where Ai = j−1Hj with j = i, i.e. the homogeneous transformation defining the state of the

joint j with respect to the joint j−1, and Rm,k and Tm,k respectively stand for an homogeneous

rotation and translation matrix in the m-axis with parameter k.

Given this definition, the roto-translation from the 0th reference frame (i.e. iCub’s root) to the

N th reference frame (e.g. right end-effector, involving N DoFs) is computed as:

0HN =

N∏

i=1

Ai. (B.2)

Equation (B.2) lets us computing the FK for any of the iCub’s arms. In other words, given a

feasible joint configuration set, 0HN indicates the location and orientation of the end-effector’s

reference frame with respect to iCub’s root frame. These transformations are already available

in the iCub’s architecture, specifically in the iKin library. This library does not only allow

to perform FK, but also the IK, i.e. computing the required joint configuration set for reach-

ing a certain position with the end-effector. For that, the library has an application called

cartesian solver [Pattacini et al., 2010], which minimises:

q = arg min
q∈Rn

(∥∥αd −Kα (q)
∥∥2 + w · (qr − q)>Wr (qr − q)

)
s.t.





∥∥xd −Kx (q)
∥∥2 = 0

qL < q < qU
,

(B.3)

where q defines the joint configuration of the N involved DoFs to reach xd and αd, which are the

end-effector’s desired pose and orientation, respectively; Kx and Kα are the forward kinematic

maps for the position and orientation part, respectively; qr is used to keep the solution close to a

given rest position in the joint space (weighted by an overall positive factor w < 1 and individual

weights for each joint embeeded in the diagonal matrix Wr. The solution q is guaranteed to be

within the physical bounds expressed by qL and qU (defined in Table B.1 and Table B.2 for the

right and left end-effector, respectively).

When exploiting one cartesian solver for the control of each end-effector, the DoFs belonging

to the torso must be disabled in the minimisation problem. Otherwise, the low-level controllers

receive different control commands from each cartesian solver, which can damage the robot.
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programming for assembly operations. CIRP Annals-Manufacturing Technology, 63(1):13–16.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: yet another robot platform. Interna-

tional Journal of Advanced Robotic Systems, 3(1):8.

Metta, G., Sandini, G., Vernon, D., Natale, L., and Nori, F. (2008). The icub humanoid robot:

an open platform for research in embodied cognition. In Proceedings of the 8th workshop on

performance metrics for intelligent systems, pages 50–56. ACM.

Montesano, L., Lopes, M., Bernardino, A., and Santos-Victor, J. (2008). Learning object af-

fordances: from sensory-motor coordination to imitation. IEEE Transactions on Robotics,

24(1):15–26.

Nguyen-Tuong, D. and Peters, J. (2011). Model learning for robot control: A survey.

Nicolescu, M. N. and Mataric, M. J. (2003). Natural methods for robot task learning: Instructive

demonstrations, generalization and practice. In Proceedings of the second international joint

conference on Autonomous agents and multiagent systems, pages 241–248. ACM.

Norrlof, M. (2002). An adaptive iterative learning control algorithm with experiments on an

industrial robot. IEEE Transactions on robotics and automation, 18(2):245–251.
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