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Abstract

In real-world robotics, path planning remains to be an open challenge; not only robots are asked

to move through unexplored environments, but also the motion of robots is constrained by their

dynamics. At the same time, such dynamics typically suffer from uncertainties, which should be

taken into account for completely ensuring the feasibility of the path and the robot’s safety.

The state-of-the-art usually addresses those issues separately. Planning online requires being

able to quickly update the path according to the incremental knowledge of the environment. Such

prescription is hard to be satisfied when considering the system dynamics and its uncertainty

because a policy over the entire belief space must be constructed.

This work proposes an incremental mapping-planning framework that jointly addresses these

challenges for achieving fast replanning. The framework is threefold: (1) the environment is

represented as a collection of local maps, for each of which the system has a relative uncertainty

so (2) the probability of colliding with the environment can be probabilistically checked and (3)

the feasibility of the path is ensured by considering the kinodynamic constraints of the system.

The proposed framework is evaluated with the Sparus II AUV, a torpedo-shaped vehicle suf-

fering from nonholonomic constraints. The experiments are conducted in simulated and real-world

environments, such as a breakwater structure and a natural passage. Results show the potential

of the method for planning under motion and probabilistic constraints in uncertain environments

while being suitable for systems with limited computational power.
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Chapter 1

Introduction

Since the dawn of time, human being has had the need of deeply understanding everything that

happens around us. This has propelled the research and development of different technologies

in order to achieve a better understanding in various areas of knowledge. When it comes to the

surroundings exploration, most of the effort has been focused on the Earth’s crust. Also, some

researchers have been captivated by the mysteries hidden beyond the sky. However, even though

oceans cover nearly the 71% of the Earth, according to the National Oceanic and Atmospheric

Administration (NOAA), the 90% of the seafloor remains unexplored.

1.1 Context

The late exploration of maritime environments has been mainly due to their challenging conditions;

high pressures, currents, and reduced visibility, just to name a few, have made underwater environ-

ments an unexplorable place for the human being. In order to cope with these rough conditions,

different mechanisms have been developed in the last years. Among them, and probably the most

relevant nowadays, are the underwater robots. Their use seeks not only to avoid exposing human

lives in dangerous conditions, but also to provide higher autonomy to perform complex tasks for

longer periods of time.

Underwater robots are usually divided into two groups: remotely operated vehicles (ROVs) and

autonomous underwater vehicles (AUVs). The former group consists of tethered robots, which

are remotely controlled by an operator. Their major drawback is the necessity of a continuous

connection to a vessel, which not only limits the working area, but also leads to high operating

costs. On the other hand, AUVs are robots which can cover larger areas at a lower cost because

they do not require being teleoperated from a vessel. Because of that, the usage of AUVs has been

a hot topic in research in the last decades.

The Centre Investigació en Robòtica Submarina (CIRS) is a laboratory from the VIsió per

COmputador i ROBòtica (VICOROB) institute at the Universitat de Girona (UdG). CIRS has

been actively doing research on underwater vision and robotics, while developing their own AUVs

since 1995. Nowadays, CIRS has two operative vehicles, the Girona 500 [2] and the Sparus II [3],

which are used for evaluating new hardware and software developments for underwater domains.

1
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Although these robots have proved to be capable of conducting complex tasks, e.g. structure

inspection, underwater manipulation and seafloor mapping, there are other capabilities such as the

path planning that still need to be further improved.

1.2 Motivation

Path planning is the branch of robotics aiming for a path that connects two configurations while

satisfying different requirements such as safety, efficiency and feasibility of the path. Although the

path planning problem has been studied for terrestrial, aerial and, to a lesser extent, underwater

vehicles, there are new applications that require robust planners to deal with more challenging sce-

narios. As the complexity of the system and the intricacy of the environment increases, the harder

planning a path becomes. Thus, planning feasible and secure paths in underwater environments

where the prior information of the environment is null still supposes a great challenge for the path

planning community.

Many real-world systems have limited mobility due to its mechanical constitution. Because of

that, traditional approaches of considering a point mass object capable of freely moving in the

space turns to be completely unrealistic when planning a path for those systems. Therefore, the

planner should consider the system’s motion capabilities to generate a path that is more likely

to be feasible for the vehicle. This idea is commonly referred to planning under kinodynamic or

differential constraints or, in general, motion planning.

Kinematics and dynamics usually suffer from uncertainties. When a system lacks a precise lo-

calisation system, those uncertainties become meaningful, thus increasing the error associated with

the state estimation. Although many efforts have been made to improve the system localisation,

considering those uncertainties when planning a path is still indispensable for ensuring the safety

of the system.

Some of the aforementioned difficulties have already been studied in the robotics community,

but current solutions do not tackle all the challenges at the same time. Moreover, some of the

proposed algorithms are computationally expensive, thus avoiding their use for real-time applica-

tions, especially when the environment is not known beforehand. This master thesis proposes an

incremental mapping and planning framework to jointly address the challenge of planning a path

under kinodynamic and probabilistic constraints along undiscovered environments.

1.3 Objectives

The main goal of this thesis is to develop a framework which plans and executes a two-dimensional

(2D) path over unexplored environments while ensuring the feasibility of the path and probabilis-

tically guaranteeing the robot’s safety. At the same time, the proposed approach must accomplish

the following requirements:

• To cope with real environments, where most of the obstacles generally adopt non-convex

shapes.

• To be computationally feasible for real-time and real-world robotic applications.
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• To not be an ad-hoc framework for a specific system, so it can be extended to other robotic

systems.

• To be oriented to cope, in the future, with three-dimensional (3D) environments.

In order to meet these properties, the main objective has been broken down into the following

tasks:

• To review the state-of-the-art of path planning under kinodynamic constraints, under uncer-

tainty, and along undiscovered environments.

• To integrate the kinodynamic and probabilistic constraints into a framework that meets

online computation constraints.

• To evaluate the proposed framework in both simulated and real environments.

1.4 Outline

The remainder of this thesis is organised as follows:

• Chapter 2 presents the state-of-the-art on path planning algorithms which either deal with

kinodynamic constraints, uncertainties or unknown environments.

• Chapter 3 introduces the methodology for considering both motion and probabilistic con-

straints in the path planning problem.

• Chapter 4 details how the safety of the path is probabilistic guaranteed even with an

incremental knowledge of the environment.

• Chapter 5 explains the proposed framework for incrementally mapping the surrounding,

while simultaneously planning paths that meet motion and probabilistic constraints.

• Chapter 6 reports and evaluates the results obtained in both simulated and real-world

scenarios.

• Chapter 7 revisits the work done in this master thesis and suggests future work.



Chapter 2

State-of-the-art

Although path planning is the main research area behind the work presented throughout this

thesis, the validation of the proposed approach in real-world scenarios has involved other fields of

study such as perception, mapping, navigation, and control. Since reviewing the state-of-the-art

for all those areas is out of the scope of this manuscript, this chapter mainly focuses on reviewing

the most relevant path planning techniques.

2.1 Background

A basic path planning strategy can be adapted and expanded to address a wide range of require-

ments and constraints. Because of that, this section reviews not only some of the most relevant

path planning approaches, but also different contributions that cope with more specific challenges

such as path feasibility, obstacle avoidance, and online planning.

2.1.1 The path planning problem

Probably one of the oldest areas of research in robotics is path planning, dating back to the 60’s [4].

At that time, the path planning problem was addressed and solved over the workspace W = Rnd ,

being nd = 2 for systems moving on a plane (2D space) and nd = 3 for systems performing their

tasks in a volumetric environment (3D space). However, this approach is not scalable for high-

dimensional systems, i.e. systems involving a high number of DoFs. It was not until the 80’s,

when Lozano-Pérez introduced the concept of the configuration space (C-Space) [5], [6], a set of

all possible configurations q that the system can adopt, that path planning became an active area

of research. The C-Space can be subdivided into the free space Cfree and the obstacle region Cobs,
which correspond to those configurations that are collision-free and under collision, respectively.

Thus, path planning aims to find a continuous path p : [0, 1]→ Cfree, such that p(0) = qstart and

p(1) = qgoal.

Many algorithms have been proposed to address the path planning problem. Probably the earli-

est ones are the Bug methods, which are reactive and sensor-based approaches inspired by insects.

These algorithms assume that the system can only have a local knowledge of the environment,

which is used for circumnavigating the obstacles until reaching the goal [7], [8]. Another approach

4
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is to use artificial potential fields, where the goal is represented by an attractive field, while the

obstacles are represented with repulsive fields [9]. The total field results in an optimisation problem

that can guide the robot towards the goal [10].

The information in the C-Space has been widely exploited with theory of graphs. Grid-based

algorithms discretise the C-Space to create a graph, which is later explored using a graph search

method to find a collision-free path. Some search methods are A* [11], D* [12] and the Dijk-

stra’s [13] algorithm, from which many variants have been proposed. Another discrete approach

is sampling-based methods, which are further divided into single and multiple start-to-goal-query

algorithms. The former builds a graph or tree out of random samples from the C-Space (nodes)

and connecting them (edges) when possible, while the later creates a roadmap which contains the

information about all feasible routes according to a specific set of properties [14]. The most widely

known sampling-based algorithms are the expansive-spaces tree (EST) [15], the rapidly-exploring

random tree (RRT) [16] and the probabilistic roadmap (PRM) [17]. Based on them, there have

been proposed different extensions such as the RRT* and PRM*, which incorporate reconnection

strategies to obtain asymptotic optimal solutions [18].

2.1.2 Towards path feasibility

Real-world robotics usually suffer from limited manoeuvrability. This fact has to be contemplated

by the planner to ensure feasible paths for a specific system. However, traditional path planning

approaches cannot cope with this requirement. Thus, Donald et al. coined back the concept of

kinodynamic constraints in 1993. It refers to considering kinematic and/or dynamic aspects of the

system [19]. When such constraints are integrated into the path planning problem, it seeks to find

a feasible path in state space (X-Space) or, in other words, to find a set of states z or motions

which are feasible according to control space (U-Space). Then, the motion planning problem aims

to find a continuous path p : [0, T]→ U-Space, such that p(0) = zstart and p(T) = zgoal.

The motion planning problem is usually addressed with either grid-based or sampling-based

methods [20], [21]. However, motion planning can be also addressed with pure mathematical-based

approaches, which describe both the W and the system in a mathematical form. Even though this

threefold classification, some motion planning problems require a combination of algorithms to find

a solution path [20].

One of the earliest works in motion planning used a grid-based approach for building a graph

from the X-Space. The obtained cells (nodes) were connected (edges) by applying feasible system

inputs [19]. Later proposals inspired by this work weighted the connection between nodes according

to the environmental information while the system constraints were considered by an upper layer

of the framework [22], [23]. An alternative to the traditional grid-based approach was presented

in [24], where a multi-resolution lattice was built by considering the system capabilities and con-

straints. Once obtained a graph that includes the system constraints, any search method can be

used to find a solution from the starting state to the goal state. Alternatively, other search-based

methods have been proposed to include the system constraints during the search, such as AD* and

Hybrid-State A* [25].

Sampling-based methods have also been widely used for motion planning. In fact, the original

RRT [16] was already taking the system capabilities into account. In this case, the tree was
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expanded using feasible control inputs, which were obtained from uniformly sampling the U-Space.

Nowadays, there can be found several RRT variants. One of the most outstanding variants is

the closed-loop RRT (CL-RRT), which considers not only the vehicle’s motion model, but also

the controller’s dynamic behaviour [26]. Among the RRT-based algorithms that can be found

in the literature, none of them provides optimal paths. Actually, achieving this property when

considering kinodynamic constraints remains to be a formidable challenge, because a steering

function is required [27].

A kinodynamic RRT* for linear systems was presented in [28]. However, this approach is limited

because most of the systems under kinodynamic constraints have a nonlinear mathematical model.

In order to simplify the model and to overcome this lack of optimality, there are different options:

(i) to linearise the system [29], [30], [31], (ii) to approximate the kinodynamic constraints by using

geometric solutions such as Dubins curves [32] or Red Shepp curves [33], and (iii) to dodge the

need of steering functions by using a shooting approach [34]. This later option has been recently

adopted in a tree-based method, conceiving the stable sparse RRT (SST) algorithm [35].

2.1.3 Planning over the Xfree

Determining if a state x belongs to the Xfree turns to be an indispensable ability of any motion

planning algorithm. This task has been widely addressed considering point-mass systems, so a

state x is said to be valid if it belongs to the Xfree. The same approach has been used when

planning for rigid bodies, but the Xfree is shrunk accordingly to the dimensions of the system.

Many other heuristics have been proposed in the literature, such as the so-called clearance, which

aims to maximise the distance to all the obstacles with the shortcoming of being computationally

expensive [36]. Recently, another heuristic has been proposed, which defines a set of risk zones

around the state to evaluate its associated risk, so it could be accepted or rejected according to a

defined threshold [37].

Those heuristics might not guarantee a high level of robustness in real-world robotics, where

systems and the environment usually suffer from uncertainties. In these scenarios, decision-making

is usually conducted in the belief space (B-Space). This kind of planning problems is commonly

formulated as a partially observable markov decision process (POMDP) [38]. Alterovitz et al. in-

troduced the stochastic motion roadmap (SMR) algorithm, which uses a sampling-based roadmap

representation of the C-Space to formulate a markov decision process (MDP) [39]. Without ad-

dressing this challenge using MDP-based approaches, Censi et al. propagated both the state and

the uncertainty on a grid-based representation of the extended space of poses × covariances [40].

Similarly, the belief roadmap (BRM) algorithm is a variant of the PRM algorithm which is evolved

in the B-Space [41], and the feedback-based information roadmap (FIRM) builds a graph in the

B-Space, where nodes are beliefs and edges are local controllers [42]. Blackmore et al. used

linear chance constraints together with disjunctive linear programming to efficiently perform prob-

abilistic convex obstacle avoidance [43]. This formulation later led to the chance constrained

RRT (CC-RRT) [44]. In contrast to the previous works, a mathematical approach was presented

in [45], where planning is conducted in the continuous B-Space by finding the best path using

nonlinear optimisation methods.

As stated in [46], considering while planning the cumulative nature of configuration uncertainty
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to reach distant goals is essential. Thus, real-world robotic applications need the presence of

landmarks to bound and reduce their location uncertainty. In fact, this challenge turns to be a

completely different field of research from the planning one.

2.1.4 Online planning

Planning in unexplored environments requires incrementally mapping the surroundings while si-

multaneously planning feasible motions. This can only be achieved either if the planning area is

small enough, or the planning horizon is short [45]. In order to deal with these constraints, mo-

tion planning algorithms must be computationally efficient by making use of a reasonable amount

of memory and being able to cope with partially known environments. All those requirements

are a must because online planning algorithms are intended to work on mobile robots, where the

computational power is usually limited and the system safety might depend on being able to take

decisions in a short period of time.

Probably the first online motion planning works were the aforementioned Bug methods [7], [8].

Those algorithms proved to be capable of conducting online navigation with a finite amount of

memory, but without any kind of optimality guarantee, especially due to their limited and local

knowledge of the surroundings [47]. From these initial approaches, several extensions have been

presented to make the motion planning algorithms more suitable for applications with online com-

putation constraints. Some of them proposed updating the exploration of the X-Space whenever a

new portion of the environment was discovered. Another common approach is to endow the plan-

ner with anytime computation capabilities, which means that the planner can provide the best

partial solution when required [48], [49]. Hernández et al. considered using the last best-known

solution as a starting point for the next planning cycle. This approach, however, uses a geometric

formulation to define the motion constraints of AUVs [37]. Many other works have assumed finite

planning horizons, so they have proposed receding horizon control (RHC) approaches, which imply

an increase of the computational costs [50], [51].

Establishing the validity of the states associated with the solution path can be computationally

expensive. This is especially critical for sampling-based approaches, where a complete description

of the C-Space or the X-Space is not available, thus requiring to conduct state validity checks

several times. One alternative to partially deal with this is the lazy collision checking strategy [52].

It was initially used with the PRM, where the roadmap is built without checking the validity of

the random states and their connections. Instead, this validation is delayed until the start-to-goal

query has to be solved, so only those connections under collision in the solution path are discarded,

while new alternatives are evaluated from the originally built roadmap. This method considerably

improves the overall computation time. There are other approaches which are also based on this

strategy. Bekris et al., for instance, proposed a motion planning framework for terrestrial vehicles,

which only validates the states once a solution path has been found [53]. The same approach was

adopted for the high dimensional C-Space of a humanoid robot [54]. A similar approach is called

opportunistic collision checking which assumes that any state is valid if is located in unexplored

areas [37].

Èric Pairet Artau�
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2.2 Discussion

After reviewing the state-of-the-art, the main challenges identified for this work are (i) dealing with

a high-dimensional C-Space due to the insertion of kinodynamic constraints into a path planning

algorithm, (ii) lacking of an optimal solution path because there is not any optimal path planning

algorithm for nonlinear models, (iii) performing probabilistic state validity checking, which becomes

a computationally expensive task and (iv) planning online because it requires a fast algorithm able

to cope with partial and variant knowledge of the environment. All those factors have been jointly

considered to propose the work presented in this dissertation.

The use of potential fields does not fulfil the requirements of this work because they need an

explicit representation of the environment and they suffer from local minima. Regarding grid-based

approaches, they also need an explicit representation of the environment and, on top of that, they

do not entirely exploit the dynamic range of the system because of the X-Space discretisation,

thus reducing the set of possible manoeuvres. Apart from that, neither potential fields, grid-based

approaches nor the roadmaps perform efficiently when the dimensionality of the system grows.

To the best of the authors’ knowledge, sampling-based algorithms might be a suitable option

to address this thesis goal. They provide a fast exploration of a high dimensional X-Space, making

them suitable for (i) integrating kinodynamic and probabilistic constraints in the planning problem,

and (ii) adopting an anytime replanning strategy to overcome the online planning requirement.

Moreover, sampling-based methods are highly adaptable, which might allow integrating all those

factors in the same algorithm. Sampling-based algorithms have clearly demonstrated their advan-

tages in complex tasks where other approaches had failed. However, these algorithms also have

weaknesses that must be always taken into account. It has been previously stated that those

algorithms neither provide optimal paths with nonlinear systems suffering from kinodynamic con-

straints nor are able to report when a motion planning problem has no solution. Furthermore,

their implementation is usually reduced at a single thread, i.e. it can not be parallelised, and they

generally do not perform well in bug trap like scenarios.

This dissertation proposes a framework suitable to jointly address these problems in real-

robotics applications. Specifically, a tree-based algorithm builds a tree in the B-Space, where

nodes represent uncertain states (beliefs), and edges are local controllers that meet the kinody-

namic constraints to evolve from one state to another. All the nodes and edges are probabilistically

guaranteed to be below a predefined threshold of collision. In order to provide online planning

capabilities to the framework, an anytime policy is adopted.



Chapter 3

Planning under motion and

probabilistic constraints

Mechanical systems generally operate under motion constraints that limit their manoeuvrability.

Therefore, in order to guarantee the feasibility and robustness of such systems when following

desired motions, those constraints must be included into the motion planner. In doing so, a

mathematical model that approximates the system behaviour is required. In real robots, simplified

models are preferred even though they introduce some uncertainty. This chapter firstly details

the sampling-based methodology that has been used to deal with both motion and probabilistic

constraints. Then, it introduces the mathematical model of a nonholonomic system, specifically a

car-like system which moves in a 2D workspace, and its modifications to make it suitable for such

a sampling-based method.

3.1 Tree-based methods for dealing with constraints

As mentioned in Chapter 2, sampling-based algorithms mainly use two types of data structures:

graphs, in the case of the PRM, and trees, in the case of the EST and RRT. Although both

approaches share most of the main characteristics, such as the use of random configurations from

the C-Space, apart from some exceptions, tree-based algorithms are commonly used to deal with

motion constraints. These methods basically build a tree of feasible (valid and doable) states. To

do so, the algorithm expands a tree towards randomly sampled states by using the mathematical

model in Algorithm 1. An additional step that is implicitly included in this expansion is the state

validity checking. This validation seeks to guarantee that the different states, randomly sampled

or resulted from the tree expansion, are valid under certain constraints. While in the simplest

case the states are only geometrically verified, in more elaborated approaches, such as the one

developed in this work, the state must meet both motion and probabilistic constraints.

In Algorithm 1, a tree T is rooted at zinit in the X-Space. Then, an iterative procedure that

includes a selection, a propagation and a validation routine, is done until the tree T reaches a goal

region, i.e. the zgoal with some tolerance. The selection process starts by uniformly sampling the

X-Space to obtain zrand (line 3) which, at the same time, is used to select the nearest state znear of

9



Chapter 3: Planning under motion and probabilistic constraints 10

Algorithm 1: EXPLORATION TREE(zinit, zgoal, X-Space, U-Space) [27]

1 T = {V← {zinit}, E← ∅}

2 while not STOP CONDITION(zgoal, T ) do
3 zrand ← RANDOM STATE(X-Space)
4 znear ← NEAREST NEIGHBOUR(zrand, V)

5 unew, Tprop ← RANDOM CONTROL(U-Space)
6 znew ← PROPAGATE STATE(znear, unew, Tprop)

7 if VALID(znear → znew) then
8 V← V ∪ {znew}
9 E← E ∪ {unew}

10 return T (V, E)

the tree (line 4). Such a node (state) is the selected one to expand the tree during the propagation

routine. In the original formulation of the RRT, a feasible control input unew is obtained by

uniformly sampling the U-Space (line 5). Then, unew is applied to dynamically evolve from znear

for a period of time Tprop to generate znew (line 6). Finally, the validation step is conducted. If

znew and the motion znear → znew are valid, they are both added to the tree (line 7).

Expanding the tree by applying a set of feasible control inputs to the system’s model allows the

planner to incorporate the system’s capabilities. However, this approach does not guarantee that

the tree is expanded towards zrand. To overcome this, some works propose directing the growth of

the tree towards the random samples using a closed-loop model of the system. In what concerns

the validation of probabilistic state constraints in a sampling-based method, Luders et al. proposed

the chance constrained RRT (CC-RRT) [44]. This algorithm considers a state to be valid when

the intersection between the Normal distribution that defines the state’s belief and the obstacles

in the map is below a predefined threshold.

Figure 3.1: Tree expansion under motion and probabilistic constraints.
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Figure 3.1 depicts the expected behaviour of a tree-based algorithm that considers both the

motion and the probabilistic constraints. In this case, the edges of the tree are guaranteed to be

feasible for a modelled system. Regarding the nodes, only those involving both a motion (states

along the edge) and a final state with minimum safety guarantees are finally included in the

tree. This is indicated with a surrounding green sphere, the size of which is proportional to the

uncertainty of the state on the node.

3.2 Nonholonomic system

The state of a nonholonomic system depends on the path taken in order to achieve it. This fact

frequently occurs in underactuated systems, i.e. vehicles which have a lower number of actuators

than DoFs. In its most generic form, such a constraint is usually modelled as:

ṡ = f(s) + g(s)u, (3.1)

where the state s ∈ Rns ⊂ X and the control u ∈ Rnu ⊂ U .

In the scope of this project, Equation 3.1 has to be accommodated for marine vehicles operating

in a 2D workspace, i.e. W = R2. Generally, those systems either (i) move forward with one

propeller and turn using fins, or (ii) move forward and turn applying a differential control strategy

on two propellers. In both cases, the system state is defined as s = [x, y, θ], i.e. C-Space =

C = SE(2) = R2 × SO(2) = R2 × S1, where [x, y] correspond to the Cartesian coordinates of the

system with respect to its reference frame, and θ is the orientation with respect to the x-axis, while

the system control is defined as u = [v, ω], i.e. U-Space = U = R2, where v is the forward velocity

and ω is the turning rate.

From this characterisation of the C-Space and the U-Space, it is important to note that those

systems are not able to move sideways so they movement on a 2D plane is constrained by the

relation of their control inputs. This fact makes the model of the aforementioned marine vehicles

similar to the model of a car-like system (Figure 3.2).

Figure 3.2: Typical car-like system with 3 DoF but with only 2 control inputs. Image credit:
LaValle [1].

Apart from acknowledging that a marine vehicle operating in a 2D workspace behaves as a car-

like system, this work also assumes that the system kinematics can be initially approximated to a
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driftless robotic system, i.e. f(s) ≡ 0. This hypothesis lets us temporally reduce the complexity

of the model, something that will be reformulated at the end of this section. Thus, the kinematic

model of the system with ns = 3 and nu = 2 is given by:

ẋ = v cos(θ),

ẏ = v sin(θ),

θ̇ = ω.

(3.2)

In order to integrate such a model in the tree expansion procedure stated in Section 3.1, the

control inputs u = [v, ω] which drive the system towards the random states zrand must be found.

This challenge can be addressed using a controller, but then the system needs to be linearised.

Because of that, the remainder of this section first linearises the system described in Equation 3.2,

so a controller can be then applied. Finally, the initial driftless system assumption is reformulated.

3.2.1 Dynamic feedback linearisation

Linearisation refers to establishing a linear approximation to a function at a given point. In the

case of mechanical systems, linearisation is usually calculated for a specific working or equilibrium

point. However, linearisation via a static state feedback does not provide a smooth system response

in a multi-working point system and it can never be exact [29]. The linearisation tangent at every

equilibrium point is uncontrollable [55]. Taking into account that robotic systems usually operate

at different working points, a dynamic feedback linearisation approach has been considered to

overcome the aforementioned limitations.

This method adjusts the control u = [v, ω] of the open-loop system defined in Equation 3.1

and Equation 3.2 according to the full system state, i.e. not only the state information contained

in s but some extra ξ. The dynamic feedback controller is expressed as:

ξ̇ = a(s, ξ) + b(s, ξ)w,

u = c(s, ξ) + d(s, ξ)w,
(3.3)

where the extra state information ξ ∈ Rnξ ⊂ X and the input w ∈ Rnw ⊂ U .

According to [56], a system can be exactly linearised via a dynamic feedback of dimension

nξ = ns – 2. Thus, defining ξ = v and the control input w = [ẍ, ÿ], the dynamic feedback

linearisation yields the controller in Equation 3.4. Note that such a controller has a singularity at

ξ = 0, which will be addressed in further sections.

ξ̇ = cos(θ)w1 + sin(θ)w2,

ω =
–1

ξ
sin(θ)w1 +

1

ξ
cos(θ)w2.

(3.4)

The integration of the designed dynamic feedback controller let us to represent the system with
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a closed-loop formulation under the state transformation z = T(s, ξ):
z1

z2

z3

z4

 =


s1

ξ cos s3

s2

ξ sin s3

 =


x

ẋ

y

ẏ

 , (3.5)

which is equivalent to a linear system of the form:

ż = Az + Bw, (3.6)

where z ∈ Rnz ⊂ X , A ∈ Rnz×nz , and B ∈ Rnz×nw . Finally, the linearised system is explicitly

described as: 
ẋ

ẍ

ẏ

ÿ

 =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0




x

ẋ

y

ẏ

 +


0 0

1 0

0 0

0 1


[

ẍ

ÿ

]
. (3.7)

3.2.2 Towards system controllability

Once the system has been linearised, the next step is to determine the set of control inputs

w = [ẍ, ÿ] which will evolve the system from an initial state z to a desired state r = [xr, ẋr, yr, ẏr],

where r ∈ Rnr ⊂ X and nr = nz. Given the system linearisation, a proportional derivative (PD)

controller can be defined as:

w1 = kpx(xr – x) + kdx(ẋr – ẋ),

w2 = kpy(yr – y) + kdy(ẏr – ẏ),
(3.8)

where kpi and kdi are the proportional and derivative gains, respectively, for the x-axis and the

y-axis. Therefore, the equivalent closed-loop system can be formulated as:

ż = Cz + Dr,

C = A – BK,

D = BK,

(3.9)

where C ∈ Rnz×nz , D ∈ Rnz×nr , and the matrix K contains the gains for the PD controller in the

form:

K =

[
kpx kdx 0 0

0 0 kpy kdy

]
. (3.10)

At this point, controllability of the initial model in Equation 3.1 has been achieved with a

dynamic feedback linearisation combined with a PD controller. Figure 3.3 draws the big picture

of all those modifications.
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Figure 3.3: Linearisation and control scheme of a nonholonomic system.

3.2.3 Correcting the driftless system assumption

Although the driftless motion model stated in the previous sections is valid as a first approximation,

it does not contribute in coping with probabilistic constraints. One alternative is to include a

component of noise into the model described in Equation 3.9. In what motion planning concerns,

this new component implies that the system is now described in the B-Space, i.e. in an uncertain

X-Space.

Before determining the uncertainty associated with the state, it is important to notice that the

formulation used until this point has been developed in the continuous time domain. However,

in order to implement the linearised and closed-loop model in a real system, it is necessary to

discretise such a model for a time step ΔT. Considering the Euler method, this operation can be

done for small time steps ΔT by computing:

zt+1 = Cdzt + Ddrt,

Cd = eCΔT ≈ (I + CΔT),

Dd =

∫
ΔT

τ=0
eτCdτ = C–1

d (Cd – I)D,

(3.11)

where Cd and Dd are the discretised versions of C and D, respectively, for a time step ΔT.

At this point, white Gaussian noise nt ∼ N (0, Pnt) can be introduced to approximate (i)

the original noise of the system, (ii) discrepancies in the linearisation, (iii) inaccuracies of the

controller, and (iv) the discretisation error. Then, the system state is now represented by a

belief bt ∼ N (zt, Pzt) ∈ B-Space, in which the mean and the uncertainty can be independently

propagated as:

zt+1 = Cdzt + Ddrt ∀ t ∈ Z0,N–1,

Pzt+1 = CdPztC
T
d + Pnt ∀ t ∈ Z0,N–1.

(3.12)

It is important to notice that since the introduced noise nt cannot be mathematically deter-

mined, different trials have to be conducted to parametrise Pnt according to how accurate the

model in Equation 3.12 is with respect to the real system. Also, in order to simplify the reading of

the following chapters, the states and equations are presented in their continuous-time formulation

to avoid using subscripts.
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Planning under environment

uncertainty

A planner that includes kinodynamic constraints seeks to approximate the system’s motion ca-

pabilities, thus minimising the risk of collision due to unexpected behaviours when following a

calculated path. Additionally, the system’s states can be probabilistically represented, as it has

been explained in the previous chapter. This allows establishing some minimum safety guarantees

when following the desired path. However, this does not verify that the environment awareness is

completely accurate. In order to deal with this latter issue, the probabilistic formulation must be

also extended to describe the uncertainty of the surroundings knowledge, especially when dealing

with initially undiscovered environments. Bearing this in mind, this chapter proposes an alterna-

tive to track the system’s relative uncertainty with respect to each portion of the map, to finally

compute the probability of collision.

4.1 Environment awareness

Environment awareness is essential in autonomous robots. For that, robots gather data to represent

their surroundings, however, this information typically suffers from noise. This is especially true

in underwater robotics, where the perception of the surroundings is generally done with acoustic

sensors. Moreover, more noise is likely to be introduced when projecting the acquired data to

the world frame, because those transformations rely on the navigation, which might have its own

associated estimation error. In order to enhance the environment awareness, different approaches

have been proposed to filter data outliers and to probabilistically fuse different sources of environ-

ment information. However, some of those algorithms tend to be unsuitable for applications with

real-time computation constraints, especially in robots with limited computing power.

This work does not only seek to address the noise from the input data, but also to build a

volumetric grid-based map in which each voxel can adopt any of the following states (Figure 4.1):

occupied (red), occluded (green) or free (blue). Considering that the environment is initially

undiscovered, the map is initialised as an empty set of voxels; in fact, undiscovered areas of the

environment (grey) are not included in the map. Then, those voxels that are observed by the

15
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robot’s perception sensors are either marked as free or occupied according to their probability of

being occupied. Moreover, since zones that are likely to be occupied are of interest, the environment

awareness considers occluded regions. These latter correspond to voxels located behind an occupied

voxel within a predefined range.

Figure 4.1: System discovering an unknown environment with a fixed range sensor. Free, occluded
and occupied voxels are marked as blue, green and red, respectively. The undiscovered environment
is indicated in grey.

Each label is associated with a particular probability of being occupied. Free voxels are set

to pfree = 0, occluded voxels with poccluded = 0.5 and occupied voxels with poccupied = 1. This

environment awareness setup has a great advantage when computing the probability of collision

with the kernel-based approach proposed at the end of this chapter, because (i) not including the

unknown space and setting pfree = 0 speeds up the computation, (ii) giving some weight to the

occluded space let us consider zones that are likely to be occupied, and (iii) rounding the poccupied

coming from the sensor fusion process up guarantees steady calculations.

4.2 Relative uncertainty with local maps

Incrementally discovering the surroundings requires having a consistent representation of the entire

environment, which is not a trivial problem. Taking into account that this challenge goes beyond

the scope of this project, the presented approach considers as an alternative to represent the

environment by a sequence of independent local stochastic maps [57], [58], [59]. A local map LM
is a locally consistent portion of the environment awareness, the voxels of which have bounded

uncertainty with respect to the reference frame {LM}. Because of that, sensor fusion can be

performed within each LMi.

Figure 4.2 depicts an example of the map’s incremental awareness. At t = 0 the knowledge of

the environment is null (Figure 4.2a). As soon as the robot starts mapping (Figure 4.2b), a local

map LM1 is initialised. This means that all the voxels that lie within this map, as well as their

corresponding beliefs, are referred to the corresponding reference frame {LM1}. At some point,
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because of the inherent uncertainty in the system’s dynamics, the uncertainty gets larger than

a predefined value. This means that the perception of the environment is considered to be too

uncertain with respect {LM1} to keep performing sensor fusion. Therefore, no more information

should be incorporated into LM1 (Figure 4.2c), so a new independent local map is started LM2

(Figure 4.2d).

(a) (b)

(c) (d)

Figure 4.2: Incremental mapping with local maps. (a) Initial environment awareness. (b) Beginning
of LM1. (c) End of LM1. (d) Beginning of LM2.

Because of the imprecise modelling of the dynamics, as the system moves, its location becomes

more uncertain with respect to each LMi, or in other words, more uncertain the location of each

LMi is with respect to the local frame. In order to distinguish this source of uncertainty from

the one associated with the motion planning problem, this work calls the former one environment

uncertainty. To numerically determine this relative uncertainty, the system’s belief transformation
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between each pair of consecutive reference frames is stored as it incrementally builds M. Then,

the environment uncertainty between the system and a specific LMi can be determined using back

propagation.

Both the motion and the environment uncertainties can be jointly considered in the motion

planning problem formulated in Section 3.1. Let us assume that the planner roots a tree in the

LMn, which is the last and current robot’s local map. When expanding the tree, the probability of

collision associated with a belief (node) b in a specific LMi needs to be computed, for what their

relative uncertainty has to be determined. This involves considering two sources of uncertainty:

• The associated to the system’s motion that accounts for the uncertainty evolution from LMn

to b along the tree (motion uncertainty).

• The associated to the environment that refers to the uncertainty evolution from LMi to

LMn going through all LMj, where j = i, ..., n (environment uncertainty).

4.3 Collision checking

Probabilistically checking the validity of a state aims to guarantee a minimum probability psafe of

being safe. In other words, the probability of a state b being in collision with any obstacle in the

M has to be below ΔP ≡ 1 – psafe, which can be expressed as:

ΔP < pcollision(b, M). (4.1)

In this work,M is composed by different local maps, each of them having a particular relative

uncertainty with the state b. Thus, the state b is probabilistic valid if

ΔP <

n∑
i=1

pcollision(b, LMi). (4.2)

To operate pcollision(b, LMi), the formulation proposed in [43] and in [44] is computationally

forbidden because all the obstacles in each LMi must be independently convexified. Moreover,

obtaining such a representation is (i) challenging without a prior knowledge of the number of

obstacles in the environment, (ii) imprecise with the presence of noise in the map and (iii) com-

putationally expensive for complex environments. To overcome these issues and leveraging the

discrete representation of the environment, this work proposes the kernel-based approach detailed

in Algorithm 2, which allows validating b according to Equation 4.2.

After extracting the mean z and the motion uncertainty Pz of the belief (node) b (line 1), the

probability of collision is computed by checking all the local maps in M. Before that, but, the

motion uncertainty of the system and the environment uncertainty of the LMi have to be merged,

obtaining P, which represents the uncertainty of b with respect to the {LMi} (line 4). Then,

only the occluded and occupied voxels in LMi (line 5) within a radius of 3.03σ from z (line 6) are

weighted by the value at position (LMi - z) of a N (0, P) (line 8). At each iteration, the bound in

Equation 4.2 is checked to immediately report the invalidy of the state, if necessary (line 9).



Chapter 4: Planning under environment uncertainty 19

Algorithm 2: PROBABILISTIC VALIDITY CHECKER(b, M, ΔP)

1 (z, Pz) ← b
2 pcollision = 0

3 for all LM in M do
4 P, σ← MERGE(Pz, ENVIRONMENT UNCERTAINTY(LM, z))

5 for all voxels in LM do
6 if DISTANCE(voxel, z) > (3.03σ) then
7 next

8 pcollision += GET OCCUPANCY(voxel) · GET GAUSSIAN AT(voxel - z, P)

9 if pcollision ≥ ΔP then
10 return False

11 return True

The essence of this algorithm is illustrated in Figure 4.3. Since b has a different uncertainty P

with respect to each LMi, the probability of collision between those elements has to be individually

evaluated. For that purpose, a kernel that emulates N (0, P), with a resolution equal to the

one of the map, is used. In order to speed up this process, (i) the kernel is bounded at 3.03σ

and (ii) neither free nor unseen voxels are considered, which is known as opportunistic collision

checking [37]. Finally, the probability of collision with the entire map M can be obtained by

adding up the probability of b colliding with each LMi. It is important to notice that since the

computation of each pcollision(b, LMi) is bounded at 3.03σ, the maximum probability of collision

can be 0.99. Thus, the predefined threshold ΔP is correspondingly scaled as 0.99ΔP.

(a) (b)

Figure 4.3: Methodology for computing the probability of collision. (a) The robot has built a map
with 3 local maps. From the third one, a tree is expanded and a certain node is checked. (b)
Kernel setup for computing the probability of collision with each local map.
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Two approaches have been considered to perform the element-by-element multiplication be-

tween the kernel and the environment: (i) exploring the kernel row-column wise, and (ii) conduct-

ing a spiral-like traversing, i.e. from the centre to the outer part of the kernel. As reported in

Section 6.2.1, the latter approach permits considering the highest values of the kernel first, being

more efficient than the row-column wise exploration. However, the computational time of the

spiral-like traversing strategy is still slightly higher than methods in [43] and [44] but in favour of

(i) dealing with non-convex environments, (ii) being suitable for unknown environments and (iii)

explicitly computing the probability of collision without conservatism.



Chapter 5

Framework for mapping and

planning under uncertainty

In order to efficiently plan paths in undiscovered environments under motion and probabilistic

constraints, the methods developed in Chapter 3 and Chapter 4 have to be jointly considered.

In doing so, this chapter presents a framework that integrates such approaches as schematised

in Figure 5.1. Furthermore, the framework includes a high-level trajectory tracking algorithm to

guide the robot through the calculated path so all its properties are kept.

Sensor	fusion
Octomap

Framework
manager

Perception	
sensors

Low-level	
controller

Incremental	
mapping

Trajectory	
tracking

Motion	
planner

Figure 5.1: Framework for incrementally mapping and planning under motion and uncertainty
constraints.

The proposed framework has been fully implemented in C++ over the robot operating system

(ROS) [60]. This allows separating the robot’s software components such as planners, mappers,

controllers, driver, etc., into functional blocks that are called nodes. Such nodes are allowed to

communicate each other by using a publish-subscribe protocol. This modular structure makes the

framework to be easily integrated within different robotic platforms.

21
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5.1 Environment representation

To represent the environment accordingly to the specifications stated in Section 4.1, a twofold

strategy is considered. First, sensor fusion in each LMi is done with OctoMaps [61]. Secondly, an

additional layer is defined to both include the occluded regions in each LMi and to manage the

transformations between local maps.

OctoMap efficiently addresses the sensor fusion problem. Data acquired by the sensors is fused

into a robust estimation of the true state of the environment. This is done by probabilistically

considering the uncertainty of the measurements. The resulting estimations are integrated into a

3D occupancy grid map, which has a resolution that can be freely adjusted. Such a map is stored

in an octree data structure, which provides fast access time while, at the same time, optimising

the use of memory. A more detailed presentation of the method can be found in [61].

The additional layer included on top of the sensor fusion stage leverages the information pro-

vided by OctoMap [61], i.e. the voxel’s probability of being occupied, to determine if they are

either free or occupied space. This decision is made by thresholding such a probability at 0.5.

Then, the environment awareness is expanded with occluded regions, which correspond to those

unseen voxels located behind the occupied space. In order to limit the size of the occluded regions,

only voxels within a certain radius from the robot’s position are considered. In this work, the

radius corresponds to the sensor’s maximum range.

Apart from that, the upper layer also handles the creation and connection of the local maps.

It checks the system’s uncertainty evolution to decide if keep performing sensor fusion leads to a

consistent local map. As soon as the uncertainty of the system exceeds a predefined value, the

additional layer starts a new local map, the reference frame of which is set to the vehicle’s state

at the end of the previous local map.

5.2 Motion planner

When using sampling-based methods to address the motion planning problem, having a steering

function is essential for obtaining optimal paths. However, many systems that operate under kin-

odynamic constraints do not have such a function. Given this limitation in many systems, Li et

al. proposed the SST algorithm to dodge the need of a steering function for getting asymptotically

near-optimal paths [35]. As detailed in Algorithm 3, such a planner is a sampling-based method

that uses a tree expansion methodology, similar to the one explained in Section 3.1, but with a par-

ticular selection procedure that is called forward propagation. This work uses the implementation

of such algorithm available in the open motion planning library (OMPL) [62].

The SST planner divides the nodes in T into two subsets, Vactive and Vinactive. The former one

contains those nodes that have the best path cost from the root binit in a local neighbourhood of

radius δS. Vinactive, on the other hand, stores the nodes that do not have the best local cost, but do

have children with good path costs in their local neighbourhood. Thus, when conducting a search

along the tree, only nodes in Vactive have to be considered. There exist different optimisation

criteria to determine the best cost of a path such as length, time, energy, etc; in this work, the

path cost is evaluated with its length.
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Algorithm 3: SST((zinit, Pzinit), planning time, B-Space, U-Space, δBN, δS, M, ΔP)

1 Vactive ← {(zinit, Pzinit)}
2 Vinactive ← ∅
3 T = {V← Vactive ∪ Vinactive, E← ∅}

4 while not STOP CONDITION(planning time) do
5 zrand ← RANDOM STATE(B-Space)
6 (znear, Pznear) ← GET NEAREST NEIGHBOURS(zrand, Vactive, δBN)
7 if (znear, Pznear) = ∅ then
8 (zselected, Pzselected)← NEAREST NEIGHBOUR(zrand, Vactive)

9 else
10 (zselected, Pzselected) ← argminz∈(znear,Pznear )

COST(z)

11 Tprop ← RANDOM CONTROL DURATION()
12 (znew, Pznew), unew ← PROPAGATE BELIEF((zselected, Pzselected), zrand, Tprop)

13 if VALID((zselected, Pzselected)→ (znew, Pznew), U-Space, M, ΔP) then
14 if IS NODE LOCALLY THE BEST((znew, Pznew), Vactive, δS) then
15 Vactive ← Vactive ∪ {(znew, Pznew)}
16 E← E ∪ {unew}
17 PRUNE TREE((znew, Pznew), Vactive, Vinactive, E)

18 return T (V, E)

The tree expansion in the SST is presented in Algorithm 3. A tree T is rooted at binit in

the B-Space (line 3). Then, the tree is expanded with the typical iterative selection-propagation-

validation procedure until a stop condition is met. In this work, the planner stops after a specific

amount of time specified in planning period (line 4). The selection process starts by uniformly

sampling the B-Space to obtain zrand (line 5) which, at the same time, is used to select, among

the nodes in a local neighbourhood of radius δBN, the node bselected with lowest cost from the

root (lines 6 to 10). bselected establishes the node from which the tree is expanded during the

propagation routine. In this work, a feasible control input unew that grows the tree towards zrand

is obtained by applying the linearised closed-loop system formulated in Chapter 3. This control law

expands the tree for a period of time Tprop, thus generating bnew (line 12). Then, the validation

Algorithm 4: VALID(segment, U-Space, M, ΔP)

1 for all motions in segment do
2 b, u ← motion

3 if u /∈ U-Space then
4 return False

5 if not PROBABILISTIC VALIDITY CHECKER(b, M, ΔP) then
6 return False

7 return True
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step firstly determines whether the segment bselected → bnew is feasible and probabilistically valid

according to Algorithm 4 (line 13). Furthermore, if bnew is locally the best within a radius δS

(line 14), it is added in the Vactive subsection and unew in E. Finally, the tree is traversed to check

that its subsections (Vactive and Vinactive) maintain the aforementioned properties (line 17).

Note that the validation routine is done over a complete segment, which includes the involved

set of motions. At the same time, each motion is composed by a belief and the corresponding

control input. Thus, as detailed in Algorithm 4, to guarantee that a segment is feasible and

safe, all its control inputs have to belong to the U-Space (line 3) and all its beliefs need to be

probabilistically checked (line 5).

5.3 Path tracking controller

Once a path to the goal has been found, the robot must try to follow it precisely in order to

keep its feasibility and safety properties. To do so, the model presented in Section 3.2 has been

used altogether with some features of the line-of-sight (LoS) trajectory tracking controller [63].

The combination of those parts leads to the proposed trajectory tracking controller detailed in

Algorithm 5.

Algorithm 5: PATH CONTROLLER(path, R)

1 z ← GET NAVIGATION()
2 elapsed time ← 0.1

3 while not END ACHIEVED(z, path) do
4 elapsed time ← last time - current time

5 if elapsed time ≥ 0.1 then
6 z ← GET NAVIGATION()
7 r ← COMPUTE LOOKAHEAD(z, R, path)

8 [v, θ̇]← GET CONTROL INPUTS(z, r, elapsed time)

9 ROBOT CONTROL ARCHITECTURE(v, θ̇)

10 last time ← current time

Figure 5.2: Trajectory tracking controller.
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The trajectory tracking algorithm iterates until the end of the path pn is achieved (line 3 to 5).

At each iteration, the system’s current status z is the centre of a circle with radius R. As shown

in Figure 5.2, this circle intersects the path at two points, from which the one closest to the end of

the path is selected as lookahead or reference r (line 7). Then, the controller inputs correspond to

z and r in order to address the geometric and dynamic tasks involved in any manoeuvring problem,

i.e. driving the system to r with a set of feasible velocities (line 8). Finally, the trajectory tracking

controller’s outputs [v, θ̇] are sent to the vehicle’s low-level controller (line 9).

5.4 Framework manager

To integrate and coordinate all the previous modules in an online approach, the framework contains

a manager that works as a coordinator. Algorithm 6 explains the pipeline execution of this manager

and its interaction with the other functional modules.

Algorithm 6: MANAGER(zgoal, tolerance, ΔT, planning time, δBN, δS, main period, R)

1 M← ∅
2 B-Space ← ∅
3 old path ← ∅
4 elapsed time ← main period

5 while not GOAL ACHIEVED(zgoal, tolerance) do
6 elapsed time ← last time - current time

7 if elapsed time ≥ main period then
8 M← UPDATE MAP()

9 if not VALID(old path, U-Space, M, ΔP) then
10 PATH CONTROLLER(old path, R)

11 vs ← GET NAVIGATION()
12 (zinit, Pzinit)← PLACE NEW ROOT(old path, vs)
13 T ← SST((zinit, Pzinit), planning time, B-Space, U-Space, δBN, δS, M, ΔP)

14 new path ← GET SOLUTION(T )
15 if BEST PATH(old path, new path) = new path then
16 PATH CONTROLLER(new path, R)
17 old path ← new path

18 last time ← current time

The framework executes a mapping-planning sequence each period of time main period until a

given goal region, i.e. a goal state zgoal with some tolerance, is achieved (line 5 to 7). Defining a

goal region instead of a single state is essential when an exact final state might not be reachable,

which is especially true when planning under differential constraints. First, the algorithm requests

an update of the environment awareness M (line 8). Then, the previous solution old path, if any,

is probabilistically checked for collision according to the new map M. If the previous path is no
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longer valid, the trajectory tracking algorithm detailed in Section 5.3 is updated with the valid

segment of the path (line 9 and 10). This approach prevents the vehicle stopping every time that

a path gets invalidated.

Once updated the environment awareness, the planner is set to find a path to the goal. First,

but, in order to avoid abrupt changes in the vehicle’s direction of motion when a replanning

manoeuvre is required, the tree root binit is placed on a predicted position along the current valid

path (line 12). In that way, initial states of the solution path are prevented from being behind the

robot’s predicted position in planning time seconds, thus avoiding undesired manoeuvres (Fig 5.3).

After this, the SST algorithm grows a new tree in the B-Space for a specific planning time (line 13).

Figure 5.3: Rooting the new tree in the predicted robot’s location after a planning period.

After completing the allowed planning time, the motion planner returns a nearly-optimal path

new path (line 14). Such a solution is only accepted if it is better than the previous one. In this

work, the new path is considered to be better than the old path if any of the following conditions

is met (line 15):

• New path has a lower cost than the old path when this is still valid.

• New path goes near the invalid old path.

The former condition takes the path with less cost to the goal when the current one is still valid. If

the path in execution is not valid, only those new paths that pass close to the state that invalidated

the previous solution path are considered. This heuristic seeks to keep a similar trajectory by

filtering those paths which reach the goal through a completely different part of the environment.

It is important to note that the planner might return a path through unexplored areas, which are

easier to explore with a sampling-based approach, if the planning time is not necessary to converge

to a nearly-optimal solution.

Finally, if the new path is accepted, it is sent to the trajectory tracking algorithm and recorded

as old path (line 16 and 17).



Chapter 6

Results and evaluation

This chapter firstly details the experimental setup, which includes the motion constrained vehicle,

the sensors configuration, and the test scenarios. Then, it presents and discusses the results

obtained in both simulated and real-world scenarios.

6.1 Experimental platform

The work developed in this dissertation has been designed for any marine vehicle behaving as a

car-like system. In order to evaluate the proposed framework, an experimental validation has been

carried out with the Sparus II AUV, which is a nonholonomic vehicle. Next, the characteristics of

the vehicle, the exteroceptive sensor and the considered environments are detailed.

6.1.1 Sparus II AUV

Sparus II is a torpedo-shaped vehicle with an adaptable payload area, which allows using different

sensors configurations according to the specific mission requirements. It is characterised by efficient

hydrodynamics for long autonomy and the capability of descending up to 200 metres. Although

the vehicle moves in a 3D workspace, which means that it would require a six-dimensional (6D)

C-Space, it can only be actuated in surge, heave, and yaw. This kind of constrained motion makes

the Sparus II an ideal platform to validate the proposed approach. Furthermore, the Sparus II is

Figure 6.1: Sparus II AUV.

27
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equipped with a set of navigation sensors that includes a global positioning system (GPS), inertial

measurement unit (IMU), a pressure sensor and a doppler velocity logger (DVL), which are used

to estimate the state of the vehicle.

From the software perspective, the Sparus II AUV is controlled by the component oriented layer-

based architecture for autonomy (COLA2) [64], which is a control architecture fully implemented

over ROS. This allows to easily integrate new middle and high-level components such as the

mapping-planning framework proposed in this work.

6.1.2 Exteroceptive sensor

For conducting the experiments, the Sparus II AUV has been equipped with the mechanical scanned

imaging sonar (MSIS) depicted in Figure 6.2a. This sensor has been mounted on the upper front

part of payload area. This MSIS is called Micron, from the Tritech company, and it is specially

designed for underwater domains, so ROVs and AUVs can gather information from the surrounding

environment. This sonar scans the surroundings by rotating a fan-shaped sonar beam through a

series of small angle steps. As illustrated in Figure 6.2b, the fan-shaped beam has a vertical

aperture angle of 40◦ and a narrow horizontal aperture of 3◦.

(a) (b)

Figure 6.2: Micron from Tritech. (a) Physical appearance. Image credit: www.tritech.co.uk/.
(b) Fan-shaped beam. Image credit: www.seaviewsystems.com/.

The sensor can be set to cover variable length sectors, from a few degrees to full 360◦ scans.

For this experiments, it has been configured to scan from -60◦ to 60◦ with respect to the vehicle’s

direction of motion. Even though a wider field of view (FoV) to perceive more information from

the environment could be desirable, it would compromise the scanning time, i.e. the amount of

time required for doing a full scan. Regarding the range of the beam, it has been set at 10 metres

to avoid false-positive detections caused by the high vertical aperture of the sonar.

6.1.3 Test scenarios

A total of three different scenarios have been used to test and evaluate the proposed framework:

harbour, blocks and canon. As illustrated in Fig 6.3, all those scenarios are inspired by real areas

located in Sant Feliu de Gúıxols, Catalonia, Spain. Regarding the scenario called harbour (orange),

it is an area inside the port which stays protected from strong waves and currents. Contrarily, the
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blocks (green) is a breakwater structure in the outer part of the port, and the canon (red) is a long

natural passage. Both of them areas are exposed to the open sea conditions.

Figure 6.3: Real-world scenarios in Sant Feliu de Gúıxols used to test the proposal: harbour
(orange), blocks (green) and canon (red). Image credit: Map data c©2017 Google.

All those areas are simulated in the underwater simulator (UWSim), a simulator which is

completely integrated with the Sparus II architecture COLA2. This allows testing the algorithms

before conducting the experiments in the real scenarios. Figure 6.4 shows Sparus II close to the

seabed of a flat region.

Figure 6.4: Sparus II AUV in the UWSim.
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6.2 Experiments in simulated scenarios

Performing experiments in simulated scenarios let us show and evaluate some theoretical aspects

of the framework, such as the collision checking method proposed in this framework. Moreover, it

lets testing the whole algorithm in controlled environments.

6.2.1 Collision checking

It is well-known that the most expensive part of any planner is the collision checking routine. Thus,

the performance of a planning algorithm can be lessened for a slow collision checking method. Even

though this work has proposed a kernel-based approach for computing the probability of collision

of a certain state, next is shown that its performance, i.e. trade-off between exploration of the

B-Space and computation time, is comparable to the state-of-the-art methods which assume known

and convexified environments.
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Table 6.1: Workspace exploration according to different probabilistic collision checking methods.
The obstacles are represented by blue lines, while the valid and invalid states are marked in green
and red, respectively.

First, the map exploration is analysed in comparison with the original proposal of the chance

constraints formulation [43] and its less conservationist version [44]. For that purpose, a 2D
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environment with two blocks is set, which are defined by the blue lines in all the images in Table 6.1.

Then, each method is asked to validate 3000 states uniformly sampled over the B-Space but with

fixed uncertainty. The experiment is performed twice but with different thresholds, psafe = 0.5

and psafe = 0.95.

The obtained results are shown in Table 6.1. The original proposal of the chance contraints [43]

is so conservationist that rejects many states which are actually probabilistically correct. This

behaviour leads to a shrinkage of the real Bfree inside the passage, what would difficult any planner

to find a valid path through the blocks. The second row of images proves the method proposed

in [44] to be less conservationist than the original formulation. Finally, because of the complete

lack of conservatism, the kernel-based approach proposed in this work only rejects the states that

are truly in collision according to the selected psafe. Note in the bottom-left image of Table 6.1

that states on the borders of an obstacle are mathematically valid, but this might not be desirable

for real-robotic applications. Thus, a heuristic could be set to address this shortcoming of the

kernel-based approach.

Secondly, in order to compare the computation time of those methods, they have been exe-

cuted 10 times each in the same known environment composed of two blocks. Each trial has run

until 12000 free and 12000 occupied samples have been obtained to finally report the statistics in

Figure 6.5. Note that in these experiments the uncertainty has not been fixed, thus obtaining a

representative idea of the methods’ behaviour when they are used in a motion planning algorithm.

Note that those results uniquely account for the collision checking routine, so formulations in [43]

and [44] would require additional time to convexify the environment.
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Figure 6.5: Computation time when validating a state with different approaches.

Regarding the method proposed in this work, two different implementations have been tested:

checking the kernel row-column wise and in a spiral-like traversing, i.e. from the centre to the
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boundaries. This last approach promotes checking the highest values of the Gaussian first, what

according to Figure 6.5, turns to be faster than the traditional row-column wise approach.

The most efficient implementation of the proposed collision checking routine, i.e. the spiral-like

traversing, is almost twice as slow as the chance constrained formulations when validating a state,

but it approximately needs the same time to reject it. In general, the methods with a higher level

of conservatism are the fastest ones, because the most exhaustively the B-Space is checked, the

more time is needed. Moreover, since the proposal needs to traverse the whole kernel, the time

needed to validate a state is related to the state’s uncertainty.

Results shown in this section suggests that the trade-off between exploration and computation

time depends on the type of environment. For the scenarios where obstacles are distant from the

others, the original chance constrained formulation might be the best option to rapidly explore a

known map. However, if narrow passages are present in the environment, a method such as the

one proposed in this work is preferred; its slightly higher computation time is compensated with

an exhaustive exploration of the Bfree. Thus, when dealing with unknown environments, the last

method is favoured to (i) avoid the need of convexifying the environment, which requires extra

computation time, and (ii) be prepared for the most challenging environment.

6.2.2 Undiscovered environment

The overall framework has been tested in two simulated environments, the blocks and the canon. In

both cases, the robot is asked to map the environment with a 0.5 metres resolution and to navigate

at a constant depth of 1.5 metres with a maximum velocity of 0.35 m/s. The minimum probability

of safeness is set to psafe = 0.8. The rest of parameters are tuned according to the model of the

system in the simulator. To monitor the system’s behaviour along the different surveys, the ROS

visualizer (RViz) is used.

The first single start-to-goal-query experiment is in the simulated blocks scenario. As it has

been previously introduced, this environment is inspired by a real breakwater structure in Sant

Feliu de Gúıxols, Catalonia, Spain, which is depicted in Figure 6.6. In order to bound such an

environment, the considered portion of the map in the simulator has dimensions of 34 metres length

by 51 metres width. This includes the first 4 blocks starting from the right and its corresponding

3 narrow passages.

Figure 6.6: Breakwater structure in Sant Feliu de Gúıxols. Image credit: Map data c©2017 Google.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.7: Experiments in the simulated blocks scenario. Multiple mapping-validating-planning
actions make the robot safely get to the goal.
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The framework’s behaviour during this survey is detailed in Figure 6.7. Initially, the knowledge

of the environment is null, the robot’s state is at the bottom-right corner and the goal state is on the

top-left corner, marked as a blue rectangle (Figure 6.7a). When the framework is initialised, a tree is

expanded (blue) and the first solution (red) is almost a straight line towards the goal (Figure 6.7b).

The robot starts following the path, and suddenly the current path gets invalidated due to the

perceived environment (Figure 6.7c), so the algorithm plans an alternative path which surrounds

the obstacle (Figure 6.7d). Then, the framework does an iterative mapping-validation-replanning

sequence to find a solution over the continuously updated environment awareness (Figure 6.7e to

Figure 6.7j). The solution path illustrated in Figure 6.7j does not get invalidated anymore because

it goes through the free space. In fact, it is kept until a path with lower cost is found in Figure 6.7k.

Finally, Figure 6.7l shows the 26th and last planned path towards the goal, which leads with an

executed trajectory of 45.2 metres length covered in 2′04′′.

The second experiment is conducted in the simulated canon scenario. It has been inspired by

the natural canon in Sant Feliu de Gúıxols, Catalonia, Spain. As illustrated in Figure 6.8a, such

a scenario has a narrow passage, the length of which is approximately of 28 metres. Detailing

the framework’s behaviour in this environment could turn to an extensive sequence of illustrations

because of its dimensions (80 metres length by 30 metres width). Thus, Figure 6.8b illustrates the

resulting path when performing a single start-to-goal-query in this scenario. After 2′59′′ and 31

replannings, the goal is successfully achieved with a path of 68.4 metres length.

(a) (b)

Figure 6.8: Experiments in the simulated canon scenario. (a) 3D view of the natural canon in
Sant Feliu de Gúıxols. Image credit: Map data c©2017 Google. (b) Environment awareness and
path found through the canon.
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Figure 6.8b also depicts that a perfect awareness of the environment is not achieved. Some

parts of the canon stay unmapped even though the robot could have perceived them, what might

be due to either the limited FoV or the scanning time of the sensor. As proposed in future work,

these limitations on the perception should also be integrated into the planner to avoid planning

paths through those unmapped areas.

6.3 Experiments in real scenarios

The entire framework has also been tested in real scenarios and with the real Sparus II AUV.

First, the highest level of the framework, i.e. the trajectory tracking algorithm, has been tunned

to secondly conduct a single start-to-goal-query in the blocks scenario.

6.3.1 Controller and noise tunning

To keep the properties of a given trajectory, the robot has to be able to follow such a path. To

ensure this requirement, experiments in the harbour have been conducted to tune the controller of

the trajectory tracking algorithm introduced in Section 5.3. Specifically, as illustrated in Figure 6.9,

the robot is asked to follow a challenging but feasible path of 126.3 metres (red) so its behaviour

(blue) can be used to empirically adjust the parameters of the controller.

Figure 6.9: Behaviour of the trajectory tracking algorithm in the Sparus II AUV.

The desired path is expected to be feasible for a maximum velocity of 0.35 m/s, so Sparus II is

asked to follow the trajectory with the same maximum velocity. Figure 6.9 depicts two interesting

facts. First, that the controller is able to make the system converge to the desired path even if the

robot is not placed in the exact starting position of the trajectory. Secondly, that the maximum

error committed when following the path is of 0.41 metres. Note that this measurement does
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not consider the initial oscillation of the system, which has been expressly caused to show the

convergence of the closed-loop system.

Additionally, Figure 6.10 illustrates the forward velocities and turning rates of the system dur-

ing this survey. Both velocities are variant during the survey, since the proposed path tracking

algorithm adjusts both control inputs, without fixing any of them, according to the current system

state and the reference. As it has been previously stated in this document, this behaviour is prefer-

able than geometrical approaches such as Dubins [32] and Red-Shepp [33] because the dynamic

range of the system is more exploited.
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Figure 6.10: System velocities when following a path. (a) Forward velocities. (b) Turning rates.

Those experiments have also been used to evaluate the error committed when modelling the

system. Obtaining ground truth in underwater environments is not always possible and when it is,

it requires setting external localisation systems. Since doing an extensive evaluation of the noise

in the system goes beyond the scope of this thesis, the error introduced in the model has been

estimated from the covariance matrix of the navigation filter. Since the discretized model adds

noise in each iteration, Pnt has been adjusted for a ΔT = 0.1 seconds, leading to

Pnt =

[
0.00618 0

0 0.00618

]
. (6.1)

A more intuitive explanation of the modelled Pnt is that after a 120 seconds of navigation,

the real robot’s location will be with a 99% confidence within a radius of 8.25 metres around the

robot’s belief. Note that this example considers the initial robot’s belief to be completely certain.

6.3.2 Undiscovered environment

The experiment simulated in the blocks scenario has been conducted in real conditions, but setting

psafe = 0.9. The objective of this trial is to show the suitability of the proposed framework in

real-world applications, where many non-modelled perturbations are present, such as waves and

currents. Moreover, there are particles in suspension which difficult a clear perception of the real
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obstacles in the surroundings.

The same mission setup, but with different initial positions, has been attempted 6 times. In one

of them, the mission has been aborted to avoid the vehicle colliding with one of the blocks. In this

case, the planner has found a path through an unmapped area which, because of the perception

limitations stated at the end of Section 6.2.2, has not been perceived as occupied in time.

In the other 5 trials, SPARUS II has safely achieved the goal by following the computed path.

One of those experiments is reported in Figure 6.11. Figure 6.11a and Figure 6.11b depicts Sparus II

simultaneously mapping and planning to reach the goal, while Figure 6.11c shows the path executed

for achieving the goal through the breakwater structure.

(a) (b)

(c)

Figure 6.11: Experiment in the real blocks scenario. (a)-(b) Sparus II AUV during the survey. (c)
Environment awareness and path found through the breakwater structure.

In this experiment, Sparus II is deployed at approximately 25 metres from the breakwater

structure. As soon as the mission starts, the solutions proposed by the SST planner are almost

straight lines to the goal, what proves its asymptotically near-optimal property. After navigating

approximately 15 metres, the robot starts perceiving the block on the right but it does not invalidate
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the current path. However, when the block on the left is detected and added to the map, the

current path is probabilistically in collision with the environment. From that point, the framework

does a continuous mapping-validating-replanning routine to address the incremental nature of the

environment awareness. After a total of 34 replannings from the starting point, the goal is achieved.

The executed trajectory has a length of 57.9 metres and has been accomplished in 3′07′′.

The overall framework’s behaviour when dealing with real conditions has been similar to the one

observed in the simulations. However, after analysing each module of the framework separately,

it has been noticed that (i) the perception sensor is noisier and the robot’s localisation is less

accurate than in the simulations, thus compromising the quality of the generated map, and (ii)

the trajectory tracking algorithm oscillates around the path because of the waves and currents.

Despite these challenging conditions, the framework succeeds in finding and driving the system

towards the desired goal region (Figure 6.11c).
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Conclusions and future work

The present dissertation comes to an end with a summary of all the work that has been done.

Moreover, some future work is suggested as a continuation of this dissertation.

7.1 Conclusions

This dissertation has presented a framework conceived to efficiently and jointly address all the

challenges arisen in the perception, mapping, planning and control fields when conducting online

mapping and motion planning under probabilistic constraints and in unknown environments. In

contrast to other online mapping and planning methods in the literature, this novel approach

dodges the need of using ad-hoc heuristics for determining the validity of a trajectory by kinody-

namically and probabilistically constraining the path. Thus, the main contribution of this thesis

is the uncertainty-based procedure which ensures the safety of a feasible path going through an

undiscovered environment.

The presented framework is threefold. A mapping algorithm based on local maps incremen-

tally builds a representation of the environment while keeping the relative uncertainty of the system

with the different parts of the map. Then, the planning problem with partial knowledge of the

environment is addressed with an anytime policy, which lets the SST algorithm to find an asymp-

totically nearly-optimal path during a specific period of time. To find a solution path, the SST

planner builds a tree in the B-Space, where nodes represent uncertain states or beliefs and edges

are local controllers that meet the kinodynamic constraints. Knowing the relative uncertainty of

each portion of the map with respect to the system’s belief allows establishing some minimum

safety guarantees over the path even in undiscovered environments. Finally, a trajectory tracking

algorithm based on the planner propagation model drives the system over the calculated path to

minimise unexpected behaviours and thus, the risk of collision.

The whole framework has been implemented along the ROS and uses the OctoMap library and

the OMPL to address the mapping and planning challenges, respectively. Then, the framework

has been integrated with the COLA2 architecture of the Sparus II AUV to conduct several experi-

ments in simulated and real-world scenarios. The results demonstrate the potential and suitability

of the proposed framework to deal with real robotics constraints at the same time of exploring
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undiscovered environments. The kernel-based routine to compute the probability of collision of a

certain belief in an uncertain environment turns to be slightly costly but it explicitly computes

such probability without conservationism and deals with nonconvex representations of the envi-

ronment. Even though the obtained results are promising, the algorithm can be further improved

by tackling the aspects suggested in the future work section.

7.2 Future work

The actual framework proved to be a novel alternative to plan under kinodynamic and probabilistic

constraints over undiscovered environments while being suitable for real-world robotic applications.

Thus, the imminent efforts will be focused on conducting more experiments in real-world scenarios

in order to publish this work in a journal or conference of robotics. Apart from that, some long-

term future work is also proposed to either upgrade the actual framework’s performance or to

expand it to new horizons.

• Enhance the mapping capabilities. Planning online requires high-quality maps. Thus, it is

essential to reduce the presence of noise on the environment awareness and to work towards

a globally consistent map.

• Consider mapping constraints. Even if the mapping capabilities are enhanced, they should

be considered when planning a path. Specifically, the system should be able to explore the

areas that the path goes through before getting into them.

• Explore new sampling strategies. Sampling-based algorithms are known to lose efficiency in

narrow passages when a proper sampling strategy is not chosen. Thus, it would be interesting

to study an intelligent method for switching between different sampling strategies according

to the environment characteristics.

• Explore the concept of distance in R2 × S1 systems. In high-dimensional spaces, all states

turn to be close to each other. For that reason, it is essential to study a proper way to

represent distances in R2 × S1 systems.

• Explore the concept of distance in the belief space. If the uncertainty is included in the

distance measurement, the planner would not only aim to reach the goal with a short path

but with a few uncertainty.

• Enhance the probabilistic collision checking method. Checking the validity of a state is the

most expensive task in a sampling-based algorithm. Even though this work has reported the

proposed approach to have an acceptable performance, it would be great to enhance it to

obtain a denser space exploration.

• Automatically adapt the replanning period. Replanning should be done as soon as the SST

planner has approximately converged to a nearly optimal solution or whenever new obstacles

are discovered in the environment.
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• Work towards framework correctness. The framework should deal with those scenarios where

the robot can get trapped. Once the system is stuck, a possible solution could be to execute a

motion primitive to make the robot spin and then, drive the robot back along the performed

path until the planner finds a new path to the goal.

• Work towards an asymptotically nearly-optimal framework. The SST planner is one of the

key elements of the proposed framework. Thus, the framework could keep its properties

regarding asymptotically nearly-optimality.

• Extend the work to 3D workspaces. Many real-world systems deal with 3D environments and

their corresponding constraints. Thus, expanding this work is of great interest to completely

exploit those systems’ capabilities.
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