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Underwater Vision and Robotics Research Centre

Parc Cientı́fic i Tecnològic, Universitat de Girona, Pic de Peguera 13, 17003 Girona, Spain
juandhv@eia.udg.edu

Abstract— New potential applications of autonomous under-
water vehicles (AUVs) involve operations in unknown and
cluttered environments, therefore increasing the vehicle expo-
sure to collisions. To cope with these situations, we use an
AUV framework for planning collision-free paths in unknown
environments, which adapt and replan the paths according to
nearby obstacles perceived during the mission execution using
different range sensing sonar. We present simulation and real-
world results for the SPARUS-II AUV, a torpedo-shaped vehicle,
performing autonomous missions.

I. INTRODUCTION

Originally, a significant number of the applications for
autonomous underwater vehicles (AUVs) were devoted to
conduct surveys of underwater environments. This meant that
vehicles followed a sequence of pre-calculated waypoints
at a constant and safe altitude from the seafloor to collect
data. Nowadays, the developments in sensors and actuators,
but especially the increase of the processing power have
fostered new applications in which the AUV has to use
environment information gathered with on-board perception
sensors. Examples include imaging and inspection of un-
derwater structures in close proximity, in which information
obtained from range sensors allow adapting online the survey
path [1]. Another example is the exploration of confined and
natural structures, e.g., underwater caverns, where acoustic
sensors permit to reconstruct a 3-dimensional (3D) model of
the explored area [2].

In such scenarios, AUVs operate in unknown and cluttered
environments and cannot rely on a priori knowledge of the
work area. Furthermore, they are also affected by drift effects
on the position estimated by their navigation systems, thus
exposing them to collisions. Dealing with such constraints
requires a framework with online mapping and path planning
capabilities that can contribute to overcome global position
inaccuracy, especially the one related to nearby obstacles.

A. Motivation

Aiming to cope with the aforementioned requirements, we
present an AUV framework for both mapping and planning
paths online in unknown environments. The proposed frame-
work incrementally constructs a 3D representation of the
environment (i.e., map) using different type of perception
sensors, such as multibeam sonars, mechanically scanned
profiling sonars, echosounders, etc. At the same time, the

Fig. 1: SPARUS-II, a torpedo-shaped AUV.

framework finds and recalculates collision-free paths insofar
that the map is updated.

B. Related Work

Path planning consists in finding a collision-free path
from a start configuration to a goal configuration in the
configuration space (C-Space), which is the space of possible
robot configurations [3]. There are different computational
algorithms that attempt to solve this task. A group of them
search throughout discretization of the configuration space,
such as the A* family of algorithms [4]. However, sampling-
based methods [3] have proved effective in problems in-
volving high-dimensional C-Spaces, motion constraints and
online computation requirements.

LaValle and Kuffner [5] introduced the rapidly-exploring
random tree (RRT), a sampling tree-based algorithm for
solving path planning problems, and firstly proposed for
systems with kinodynamic (differential) constraints. Rooted
at an initial configuration (state), the tree grows by adding
collision-free states that are obtained by expanding itself
towards random and uniformly distributed samples of the
C-Space. Based on the original approach, Karaman and Fraz-
zoli [6] introduced the RRT* and its concept of asymptotic
optimality, which states that the total cost of the solution,
measured by a user-defined function, decreases as the number
of samples increases. In this approach, new configurations
are connected to the closest and best configuration, i.e.,
the one that guarantees a minimum cost. Furthermore, an
additional step of sample reconnection allows to improve
costs to surrounding states. A typical growth process of an
RRT and an RRT* can be clearly observed in Fig. 2. The



presented framework utilizes an RRT* variant, which has
been adapted to compute collision-free paths online in a
anytime fashion.

(a) (b)

Fig. 2: Growth of (a) an RRT and (b) an RRT* in a 2-
dimensional workspace with no goal specified. The starting
state of the tree is appreciated enclosed in circle.

1) Anytime Algorithms and Online Planning: An anytime
algorithm is capable of returning the best partial solution
when planning time is over. With this concept, most relevant
and known planning algorithms have been extended, includ-
ing grid-based methods (e.g., A*, D*) [7] and sampling-
based ones, such as the probabilistic roadmap (PRM) [8]
and the RRT [6].

Most remarkable contributions in terrestrial vehicles have
been presented as results of the DARPA Grand Challenge1.
Likhachev and Ferguson [9] used a lattice as discretization
of the configuration space. An anytime dynamic A* (AD*)
finds paths over the lattice. Kuwata et al. [10] presented
an alternative approach using an RRT, which considers the
vehicle model and the controller dynamic behavior. Dolgov
et al. [11] also presented an alternative where the state space
is discretized and paths are found by running an A* variant
(Hybrid-State A*). In all these cases, a common aspect of our
interest is that vehicles cope with unknown environments.

2) Path Planning for AUVs in Unknown Environments:
Despite the above-mentioned contributions in terrestrial
robotics, available research on path/motion planning for
AUVs, especially in unknown environments, is still limited
to simulation in most cases. Focusing specifically on those
devoted to solve start-to-goal queries there are different
approaches. Warren [12] used repelling and attractive poten-
tial fields, for obstacles and goals respectively, to compute
the obstacle-free paths. Carroll et al. [13] discretized and
represented the workspace with quadtrees to find minimum-
cost paths over them by using an A*. Alvarez et al. [14]
used genetic algorithm (GA) to find an optimal path while
avoiding getting trapped by local minima. Petres et al. [15]
proposed to use fast marching (FM) method, i.e., a level-set
method that permits to obtain a solution of a minimization
problem (the distance in path planning queries). However,
in all these cases, complete knowledge of the environment
was required and assumed as available in datasets such as
bathymetric maps.

1The DARPA Grand Challenge is a competition of autonomous vehicles,
funded by the Defense Advanced Research Projects Agency (DARPA).

There exists, however, other cases that use environment
information obtained by on-board sensors. Petillot et al. [16]
presented a first approach for online obstacle avoidance and
path planning for underwater vehicles that uses a real-world
dataset of acoustic images obtained by a remotely operated
vehicle (ROV) equipped with multibeam forward looking
sonar. They demonstrated the validity of their framework
by guiding a simulated model of a ROV based on dataset
information. However, capacity of simultaneous mapping and
planning online was not proven. Another approach proposed
an online path planning method that used landmarks to
guide the vehicle, though it does not permit replanning.
Additionally, the results were obtained in a water tank, i.e., a
controlled environment instead of a real-world setting [17].

C. Outline

Finally, to overcome some of the limitations of the existing
approaches and to validate our alternative approach, we used
our framework for solving and conducting a start-to-goal
task in an unknown and challenging scenario, in which
online mapping and planning (replanning) is required, thus
demonstrating not only its functionality in this particular
case, but also its suitability for the applications mentioned at
the beginning. Results include simulations with different per-
ception sensors commonly used in underwater environments.
To corroborate its applicability, we also present real-world
tests with the SPARUS-II [18], a torpedo-shaped AUV (see
Fig. 1) equipped with a set of echosounders.

II. SIMULTANEOUS MAPPING AND PLANNING

The framework is composed of three main modules (see
Fig. 3). Firstly, a mapping module that incrementally builds
an occupancy map using Octomaps, an octree-based volu-
metric representation of the environment [19]. Secondly, a
planning module that generates online collision-free paths
with our modified version of a sampling-based method [3].
Finally, a mission handler module that works as a high-level
coordinator of the planner and the AUV controllers.

Fig. 3: Main modules of the online planning framework.

A. Mapping Online Underwater Environments

In mobile robotics, exteroceptive sensors are used to gather
environment information for different purposes, such as
obstacle detection, environment mapping, robot localization
or even a combination of them, as occurs in a typical
simultaneous localization and mapping (SLAM) application.



In what path/motion planning concerns, sensors must provide
data to build a representation of the environment (map) over
which the planner has to find collision-free and feasible
paths. In contrast to what occurs in ground and aerial applica-
tions, where laser-based range sensors and cameras provide
reliable and accurate information of nearby obstacles, their
applicability is very limited in underwater environments,
where visibility is a highly variable condition and is also
correlated with the light attenuation. Thus, acoustic sensors
provide a more reliable solution in such scenarios. Active
sonars transmit and receive acoustic signals to estimate the
distance to reflecting objects (obstacles).

Most common acoustic perception sensors can be classi-
fied into two main groups, range sensing sonars and imaging
sonars. When dealing with online computation constraints,
it is necessary to define a trade-off between the amount
of detail and the computation time required to process the
data. For this reason, we decided to use range sensing
sonars within our framework, which provide us with distance
information relative to nearby obstacles. This group includes
echosounders, profilers and multibeam sonars. In this section,
we present their most relevant characteristics and the octree-
based structure selected to represent their data. In Section III,
we present simulation and real-world results in a simultane-
ous mapping and planning task.

1) Single-beam echosounders: are devices typically
mounted pointing downwards on different maritime systems
to estimate the ocean depth. They use one emitting and
receiving transducer that releases acoustic signals in the form
of a narrow beam (with a typical aperture of ∼ 10◦). The
approximate distance to the seabed is calculated using the
time required to receive the echo signal and the known speed
of sound in water. They can also be used to detect obstacles
if they are mounted pointing towards the vehicle’s motion
direction (see Fig. 4).

Fig. 4: Typical setup for a single-beam sonar in an AUV. One
of the echosounder is mounted looking downward to distance
to the seabed, while a second one is oriented towards the
vehicle’s motion direction.

2) Mechanically-scanning profilers: are devices that work
on the same principle of single-beam sonars, but are mechan-
ically actuated in a way that permits to sequentially reorient
the single beam to cover a predefined sector, thus producing
a series of range data (see Fig. 5).

3) Multibeam sonars: are devices that, similarly to scan-
ning profilers, produce a series of range data of a scan sector.
The main difference relies on the fact that all beams are

triggered simultaneously, which permits to cover completely
the scan sector in each period of time.

Fig. 5: Setup for profiling sonar in an AUV. The profiler can
cover a predefined scan sector by sequentially reorienting a
single-beam sonar signal. The figure indicates that only one
position is being evaluated at the same time.

Fig. 6: Setup for multibeam sonar in an AUV. The multibeam
can cover a scan sector. The figure indicates that all beams
are being evaluated at the same time.

4) Octree-based representation of environment data: In
our mapping and path planning context, an AUV captures
environment distance data through any of the aforementioned
range-based sonars. That information is used to create a
3-dimensional (3D) model that must be employed to plan
collision-free and feasible paths. There are different alterna-
tives to represent 3D workspaces such as point clouds, ele-
vation maps, and multi-level surface maps. Such approaches
have features that do not fulfill some relevant aspects of
our research. For instance, point clouds store large amounts
of information, making it a memory-inefficient option for
an on-line application. On the other hand, together with
point clouds, elevation and multi-level maps do not permit
to differentiate between obstacle-free areas and unexplored
areas, which can be critical when performing missions in
environments where no previous information is available, as
is our case. Considering these facts, the proposed framework,
and specifically its mapping module, uses Octomap [19], an
octree-based framework for modeling volumetric informa-
tion. The module incrementally builds a representation of the
environment using information received from range sensing
sonars, thus defining the free and occupied space with respect
an inertial coordinate frame.



Octomaps [19] have three main characteristics that con-
tribute directly to our online mapping and path planning
application. The first of them is the probabilistic state repre-
sentation that considers previous information when updating
states, which calculates new state values according to prob-
abilistic functions, thus not only updating map information,
but also protecting it from noisy measurements. The second
is the capacity of representing unexplored areas, which is
the particular interest for exploration tasks. Finally, Octomap
offers an efficient method for modeling volumetric informa-
tion, since its computational costs in terms of time of access
and memory consumption are less that other alternatives, for
instance, it does not have to be initialized with a predefined
size, but can be enlarged or extended as demanded.

B. Incremental Path Planning

The planning module receives a query to be solved,
specified as a start and goal vehicle configuration, as well as
additional planning parameters, such as the available com-
puting time, minimum distance to the goal, and workspace
boundaries. One of the most challenging aspects presented
on this work lies on the fact that no previous information
of the environment is assumed. In order to find collision-
free paths under this assumption, this module periodically
requests an updated version of the map (Octomap) to validate
if the current path to the goal is still feasible. If it is not, the
module discards the path and reuses existing information to
find a new valid solution.

To incrementally solve the query, i.e., by updating the
solution as the vehicle moves towards the goal, this module
contains our modified version of the sampling-based method
RRT [5], [6], which has been extended with the concept of
anytime algorithms, thus enabling online and fast planning
of collision-free paths. The main advantage of using a tree-
based method is that discarding a colliding part implies re-
moving the affected branch of tree, but without recalculating
completely the solution. Section III presents some scenarios
where this characteristic can be clearly observed.

III. RESULTS

As a test scenario to evaluate our approach we used the
harbour of Sant Feliu de Guı́xols (see Fig. 7) in Catalonia,
Spain. Experiments were conducted in the external and open
area of the harbour, in a breakwater structure (marked with
a red ellipse) that is composed by a series of concrete blocks
of 14.5m long and 12m width, separated by a 4m gap with
an average depth of 7m. We used the SPARUS-II AUV (see
Fig. 1), a torpedo-shaped vehicle with hovering capabilities,
rated for depths up to 200m. The robot has three thrusters
(two horizontal and one vertical) and can be actuated in
surge, heave and yaw degrees of freedoms (DOFs). The
vehicle is equipped with a navigation sensor suite including
a pressure sensor, a doppler velocity log (DVL), an inertial
measurement unit (IMU) and a GPS to receive fixes while
at surface.

Before conducting in-water trials, we created an equiv-
alent virtual environment using underwater simulator

Fig. 7: Experiments scenario. Harbor of Sant Feliu de
Guı́xols in Catalonia, Spain, where a breakwater structure
composed of concrete blocks is demarcated.

(UWSim) [20], in which we could validate our mapping
and planning approach. We defined three different sensor
configurations to perceive the environment. In the first of
them, a set of four echosounders are located within the
vehicle payload (front) area pointing in the horizontal plane,
three are separated by 45◦, with the central one looking
forward and parallel to the vehicle’s direction of motion,
while the fourth one is perpendicular to the central one
(see Figs. 8, 9). In the second scenario, we simulated a
mechanically-scanning profiler with an aperture of 120◦ (see
Fig. 10). The last evaluated scenario used a multibeam sonar
also with an aperture of 120◦ (see Fig. 11).

Fig. 8: Perception sensors configuration. Top view of the
echosounders beams direction in the horizontal plane the
scenario of series of blocks (not drawn to scale).

In all cases, the proposed framework succeeded in solving
start-to-goal queries, which were defined in way that the
vehicle had to move through the four-meter gap between
the blocks. The main difference in each case lies on the
environment information gathered by the sensors. In the case
of the mechanically-scanning profiler and multibeam sonars,
the replanning maneuvers are less than in the case of using
echosounders, since a more accurate representation of the
environment can be achieved faster.

Finally, we conducted in-water trials to validate our ap-
proach in a real-world scenario. The SPARUS-II performed
different autonomous missions at a constant surge speed
u = 0.5m/s and a maximum turning rate rmax = 0.3rad/s
in a mission that is equivalent to the one defined in the
simulated environment (see Fig 12).



(a) (b)
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Fig. 9: Planning with echosounders.

(a) (b)

(c) (d)

Fig. 10: Planning with profiler.

IV. CONCLUSIONS AND FURTHER WORK

We presented a framework for mapping and planning
online collision-free paths for AUVs in an unknown environ-
ment. The framework gathers and processes data obtained
from range sensing sonars to represent the environment.
Simulation and real-world results not only validated our
approach, but also exposed different alternatives for future
work.

Replanning maneuvers can be considerably reduced con-
sidering the vehicle’s motion constraints. Working along this
line, we plan to implement a different controller that allows
the AUV to follow resulting trajectories generated by a
planner with motion constraints. Finally, we aim to extend
our approach to 3D motion and to consider external sources
of uncertainty such as ocean currents.

(a) (b)

(c) (d)

Fig. 11: Planning with multibeam.

Fig. 12: Real world result of the SPARUS-II AUV solving
and executing a start-to-goal query. Result is overlapping a
satellite image of the test scenario.
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