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Abstract— Medical images are used in medicine to diagnose
a wide range of health illnesses. Specially, this source of
information takes special importance when it comes to one
of the most frequently injured parts of the body, the knee. To
make this images more understandable to doctors, the state-
of-the-art proposes many techniques to segment the different
structural elements of this joint, e.g. tibia, femur and the
corresponding knee cartilages. In this paper, a segmentation
framework has been proposed to segment tibia, femur and its
corresponding knee cartilages on Magnetic Resonance Imaging
(MRI) volumes. Specifically, the proposal first builds an atlas
and an anatomical model for each desired structure of the knee,
which are used later in a Bayesian classification framework. The
obtained output is then introduced as a set of seeds in a geodesic
active contours method to obtain the final segmentation. The
results have shown that the proposal has a huge potential for
segmenting the different structures of the knee, which could
be dramatically improved by taking into account the proposed
future works.

I. INTRODUCTION

Nowadays, one of the main challenges of medicine and
engineering is to develop tools for supporting medical di-
agnosis, treatment and surgeries. In particular, knee-related
procedures are of interest since this complex joint is one of
the most frequently injured parts in our body. According to
the World Health Organization (WHO), chronic rheumatic
conditions, such as osteoarthritis, form part of the top ten
causes of disability in developed countries [1]. Moreover,
anterior cruciate ligament injuries — related to the damage on
the surface of femur and tibia — determines the retirement of a
high percentage of the athletes [2]. Thus, detecting problems
in the knees correctly and timely may improve the life quality
of a considerable portion of the world population.

The knee is a joint formed by different anatomical struc-
tures as presented in Fig. 1. Femur (thigh bone) and tibia
(shin bone) are two major bones of knees with soft tissues
like cartilage covering their connected regions. In this paper,
we address the segmentation of tibia, femur and cartilage
around them.

Several algorithms can be found in the literature for per-
forming segmentation. Promising results have been reached
in medical imaging by applying algorithms such as Otsu’s
thresholding [3], region growing [4], deformable models [5],
[6] and atlas-guided approach [7]. Notably, altas-guided
approach takes into account spatial and shape information
to address this task. In this report, a probabilistic atlas-based
approach for segmenting 3D MRI volumes using a Bayesian
framework is presented.
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The report is organised as follows. Some state-of-the-art
knee segmentation methods are discussed in Section II. Our
proposed method are detailed in Section III. The method was
evaluated with a set of volumes and qualitative and quanti-
tative results are presented in Section IV. The discussion
and analysis of the obtained results is exposed in Section V
Finally, remarks and proposals of future work are given in
Section VI and Section VII.

II. STATE-OF-THE-ART

In the last years, a large number of methods have been
applied for segmenting knee structures. For instance, Kapur
et al. [8] proposed an adaptive region growing method which
analyses texture information of different seeded regions;
Folkesson et al. [9] segmented cartilage using a voxel-based
hierarchical classification scheme; the method of Yin et
al. [10] simultaneously segmented multiple objects based on
a layered optimal graph.

Different deformable models, such as Active Contour
Model (ASM), Active Appearance Models (AAM) and
probabilistic models are among the state-of-the-art methods
which are demonstrated to provide promising segmentation
results. The ASM has been used by Solloway et al. [11]
to automatically segment femoral cartilages using B-spline
interpolation. Also, it has been used by Fripp et al. [12] for
femur and tibia segmentation and cartilage extraction. The
last task has been also addressed by Vincent et al. [13] using
a hierarchical AAM technique.

Multi-atlas segmentation strategies have already been suc-
cessfully applied in brain imaging segmentation [14] due



to its advantage of providing the spatial information and
suppressing unnecessary interference from other tissues or
organs. However, these methods have been rarely used in
knee segmentation. In this report, we used the atlas-based
segmentation for the main parts of the knee, e.g. femur,
tibia and the corresponding cartilages. In particular, the main
contributions of our work are:

1) A multiresolution affine registration framework to ac-
celerate the construction of multiple atlases.

2) A region growing method based on geodesic active
contour [15] to improve the initial segmentation results
by giving a better boundary fitting.

I1I. PROPOSED APPROACH

As mentioned previously, the aim of the segmentation
algorithm proposed in this paper is to classify tibia, femur
and cartilage from MRI volumes. The overall segmentation
framework is based on the approaches of Park er al. [7]
and Gubern-Mérida et al. [16] but many modifications were
introduced such that it is feasible for our specific case.

The segmentation framework consists mainly of the two
processes illustrated in Fig. 2: (i) training process in which
probabilistic atlases and anatomical models are defined and
(i) segmentation process of a given volume. These two
procedures are subdivided into different tasks which are
detailed in the following sections.

A. Image pre-processing

The given dataset may contain images with uninteresting
variability caused by acquisition conditions. Even when con-
sidering the same patient and the same device, the gathered
images will not be the same. Thus, pre-processing techniques
are considered to enhance the quality and decrease the dis-
tortions before computing the atlases and anatomical models.
The considered methods are normalisation given by bias field
correction and contrast stretching, mirroring of volumes, re-
sampling and padding. The details of these operations are
presented below.

1) Normalization: The images in the dataset may have
the next problems: the intensity of voxels of the same tissue
may vary in the same image (inter-patient variability) and,
also, among patients (intra-patient variability). In Fig. 3,
two volumes of the same part of the body evidencing the
latter problem are presented. In this case, the range of the
intensities of the first image is [0,400] while in the second
is [0,3500]. Then, the goal of the normalisation step is to
reduce these alterations.

In this step, we address the normalisation problem two-
fold: (i) improved non-parametric bias field correction
(N4) [17], [18] to deal with inter-patient variance and (ii)
contrast stretching correction [19] to reduce intra-patient
variability.

2) Mirroring: It is well-known that bones of left and right
legs evidence different shapes as shown in Fig. 4. If this fact
is not considered, the obtained atlas will not be accurate. For
the convenience of the model, we assume that one could be
transformed into the other using a mirroring transformation
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Fig. 2: Proposed segmentation framework.

along the z-axis. The images are mirrored and transformed
back if necessary after obtaining final segmentation.

3) Re-sampling: Recall that an image is actually the
sampling of the continuous field using a discrete grid. The
physical distance between neighbouring points in the grid is
called spacing. This factor, determined in part by characteris-
tics of the acquisition device, may be not the same for all the
images. Thus, another pre-processing step called re-sampling
is used to unify the spacing of all the inputs; in this particular
case, the spacing was fixed to 0.390625 x 0.390625 x 1.

4) Padding: After re-sampling all the images, we may
end up having volumes of different dimensions. Thus, the
approach consists in finding the maximum height, width and
depth in the database to later pad them all with zeros to this
maximum size.

B. Construction of probabilistic atlas

After pre-processing all the training images, the proba-
bilistic atlases for femur, tibia, cartilages and background are
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Fig. 3: Intensity variability. Both images correspond to MRI
of knees, but the range of intensities differs between them.

(a) Left leg

(b) Right leg
Fig. 4: Visual difference between left and right legs.

calculated. Firstly, a reference image from the training set is
chosen. This image should be carefully selected since it may
dramatically affect the final output. Secondly, each remaining
image is registered with respect to the reference. This process
is carried out by using the label images instead of the MRI.
Thirdly, the obtained transformation is applied to the original
image. This approach has been considered due to the fact
that it is easier and faster to obtain the transformations when
less data is involved. Moreover, even after the normalisation
process, the tissues around the bones may complicate the
registration process. Finally, the probabilistic atlases are
calculated by averaging the different regions of interest sep-
arately. Note that the acquired atlases will evidence different
layers as a consequence of its calculation. Since this aspect
may limit the area belonging to a certain class, a Gaussian
filter with a standard deviation of 1.5 is considered. To this

(a) Atlas of femur (b) Atlas of tibia

Fig. 5: Atlases of femur and tibia after registration and
smoothing.

point, the atlases evidence a smooth decrease of intensities
and uncertainty around the boundaries.

Note that the domain of the atlas is within the range
[0,1], which indicates the probability of belonging or not
to a specific class. Also, after acquiring the atlas for organs
and tissues, the atlas for the background can be simply
represented as an image like (1 — organs U tissues). Some
resulting atlases are presented in Fig. 5.

The computational cost of the image registration frame-
work depends on the size of the volumes that are processed.
The bigger the image, the more the algorithm will take to
process it. Since the aim of this registration process is to
obtain results in a short period of time, normal approaches
may not be suitable. However, it can be speeded up by
embedding it into a multiresolution framework.

The idea of multiresolution is to build image pyramids for
the fixed and moving images in which each level corresponds
to a scaled version of the originals as presented in Fig. 6. The
scale decreases from bottom to top, being the initial image at
the bottom and the smallest image at the top of the pyramid.
The process behind multiresolution is the following: (1) the
fixed and moving images at the top of the pyramid are
registered, (2) the obtained result is scaled according to the
scaled difference between two layers of the pyramid, (3) the
scaled parameters are taken into account for initializing the
next level. The process is carried out until the full pyramid
is explored.
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Fig. 6: Multiresolution framework. Image taken from:
http://yadics.univ-lille1.fr.

The considered transformation embedded in the registra-
tion process corresponds to an affine transformation which



takes into account scaling, shearing, translation and rotation.
Note that we do not consider non-rigid transformation since
tibia and femur are not subjected to deformations as soft
tissues.

C. Construction of the anatomical model

As the atlas contains information regarding location, dis-
tribution and shape of the object that it represents, the
anatomical model incorporates knowledge about the range
of intensities. Note that this process can be carried out
since inter- and intra-patient normalisations were performed
previously.

The construction of the anatomical model is the following.
Firstly, the histogram of each region of interest is computed.
The result would be similar to the one presented in Fig. 7.
Secondly, we assume that each class — except for the class
‘none’ — can be represented by a Gaussian. Hence, the mean
pr and standard deviation oy, are calculated for each one of
them.
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Fig. 7: Histograms of intensities for different types of tissues
or organs according to the information in the dataset.

The class ’none’ represents an exception since it may
involve different tissues or organs with varied intensities and,
hence, one mean and one standard deviation would not be
enough for properly representing the data. Instead, a multi-
modal distribution represented by a mixture of Gaussians is
assumed and, therefore, a group of parameters are estimated.

The calculated parameters are used for determining the
probability that a voxel belongs to a certain class given that
the intensities of the class are within the obtained ranges.
Given a pre-processed test image Y formed by voxels y;
and the set of classes X, such probability is expressed as
follows:

1 —(yi — 1)?
i €YX; =k) = €X )
o € YIX: = ) = e
k=0,1,2,3,4;
where £k = 0,1,2,3,4 represent background, femur, its

surrounding cartilage, tibia and its surrounding cartilage,

respectively. Note that the higher the probability, the more
we can be sure that the voxel actually is related to the class.
However, this information should be used along with the
atlas to get the final verdict.

D. Bayesian segmentation framework

Once the probabilistic atlases of training images and the
tissue models for the input image are acquired, segmentation
can be performed. Image segmentation aims to estimate the
label X that can best describe the given testing image Y, for
which the simple but efficient Maximum A Posteriori (MAP)
is quite suitable. This can be modelled by the following
expression:

P(X]Y) x arg maxP(X)P(Y|X), (2)

where the prior P(X) is given by the probabilistic atlas
and the likelihood P(Y|X) is the intensity tissue models
calculated in Sec. III-C.

E. Post-processing

After the initial segmentation from Sec. III-D, we acquire
the result shown in the Fig. 8a. As expected, the segmentation
is within the region of interest due to the fact that the atlases
for femur and tibia with the values over 0.96 are applied in
the Bayesian framework. However, the drawback is that the
initial segmentation does not cover the entire region of in-
terest. Thus, we need to perform post-processing to enhance
the result. The approach is described as follows. First of
all, the pre-processed input volume should be resized back.
Additionally, if the image was mirrored in the pre-processing
step, it is necessary to transform it back. Afterwards, the
boundaries may not be as defined as expected. One way
to deal with it is to consider high-boost. In this case, we
consider a recursive Laplacian filter for extracting the edges.
Moreover, since negative values may exist on the boundaries
after applying the last operation, the absolute value is taken
into account. After that, histogram equalisation is performed
in order to improve the contrast among different organs
and tissues. Finally, the segmentation results given by the
Bayesian classification are set as seeds, which are later used
by the geodesic active contour level set filter. The initial
structure grows as the boundaries of the ROI allow it to.
(Fig. 8b).

(a) Before post-processing (b) After post-processing

Fig. 8: Illustrations for the post-processing.



FE. Expected limitations

After extensive observations, three limitations were recog-
nised. First of all, enough data is required for building atlases
as well as anatomical models. If only a few volumes are
considered for training, the spatial information represented
by the atlases and the parameters used for estimating the
Gaussians may be not representative. Additionally, if the
bias field correction is not performed correctly, the bias of
the intensity values inside a certain organ or tissue may
remain large and, hence, leakages may appear in the final
segmentation results. Moreover, if the boundaries are not
clearly separable, leakage will still happen even though bias
field is performed perfectly. And, last but not least, the
performance of registration is an essential part of the process.
If the registration is not properly carried out, the assumptions
contained in P(X) might be wrong since the atlases are
placed in incorrect positions.

IV. RESULTS

In this section, the segmentation results obtained using the
proposed approach on a subset of the SKI10 MRI dataset
were evaluated using Dice Similarity Coefficient (DSC),
sensitivity, specificity and computing time.

The DSC measure is a ratio between the intersection and
the union of two sets. As they get closer, the higher its value
and, hence, the better the classification. The results of the
segmentation using DSC are presented in Fig. 9. On one
hand, it can be observed that femur and tibia obtained scores
above 0.8 in the majority of the cases. This may indicate
that the framework was able to place the seeds in the correct
position but the post-processing had some leakages caused
by a low contrast between bones and other surrounding
tissues as a result of the bias field. On the other hand, the
classification for cartilage of femur and tibia was not able to
surpass 0.2. In general, femur was the best-segmented class
compared to the others.
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Fig. 9: Dice Similarity Coefficient per region of interest.

The sensitivity of an algorithm determines its ability to
identify positive results. Thus, the higher its value, the more

discriminative the proposal is between normal or abnormal
samples. The results of this measure are presented in Fig. 10.
It can be observed that the proposed approach can classify
femur and tibia with a sensitivity of 0.8 in most of the cases.
However, the results for cartilages do not surpass 0.2.
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Fig. 10: Sensitivity per region of interest.

The specificity of an algorithm determines its ability to
identify negative cases. Thus, the higher the specificity,
the less number of incorrectly classified voxels during the
segmentation. The results using this measure are presented
in Fig. 11. It can be seen that the specificity is higher than
0.95 for all the situations, i.e. at the 95% of the cases, the
algorithm spotted correctly the negative cases of each class.
However, this result is severely affected by the difference in
size of the background with respect to the other classes.

Specificity

1.00 |

A .a“““ ‘n‘;“an

® »
[ ] L
»
0.98[ g * . . .
& " "8 .
[
L

nas |

CEEIEELFRLTHLTELEE R
s Femur Tibia Cartilage Femur , Cartilage Tibia

Fig. 11: Specificity per region of interest.

The SKII0 evaluation framework considers some addi-
tional measures and constraints to determine the score of a
segmentation. In the case of bones, the average symmetric
surface distance and the root-mean-square symmetric surface
distance was used to compute the score. In the case of
cartilage, the volume and thickness of the segmentation



determined by the volumetric overlap error and the vol-
umetric difference are considered. The final results under
this assessment scheme are presented in Fig. 12. It can be
seen that the proposal was able to achieve better results for
cartilage than for bones. This outcome may be a consequence
of leakages in the post-processing step.
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Fig. 12: Score for bones and cartilages according to SKI10
evaluation framework.

The entire procedure from pre-processing the images to
the final segmentation takes around 11 minutes per input
image using the multiresolution approach with 3 levels
and 2 iterations per layer. This means that the proposed
segmentation framework is suitable for application in which
response in short periods of time is required.

V. DISCUSSION

As observed in the last section, the evaluation highlighted
some difficulties of the approach for correctly identifying
cartilages. Four situations might be generating this issue:

« As mentioned previously, the registration step is crucial
since it determines the transformation to apply to the
atlases to classify the input image. Thus, if the regis-
tration was not good enough, the atlases for cartilages
were placed in locations where there was no match for
these classes. However, since the same matrix was used
to transform the different atlases and the segmentation
for bones achieved better results, it can be concluded
that the registration was performed correctly.

A bad registration during the training process may result
in a bad atlas. In this case, the atlas would not be able
to condense information of cartilages. This can be also
seen if the samples provided to the framework were not
representative.

e The anatomical model was not able to describe the
range of intensities in which the cartilage values were
moving, i.e. the assumption that a Gaussian distribution
represented the intensities of cartilages was incorrect.
In order to improve this section, a further analysis
should be performed to determine the convenience of
the normal distribution in this case.

o The size of the tissue in comparison to the other areas of
interest made the process difficult. As mentioned before,
a Gaussian smoothing kernel is applied over the atlases
in order to add uncertainty to the bordering areas. In
the case of background, the areas around the bones are
close to 1 even after filtering and, hence, it may decrease
the chances of classifying the cartilage correctly. One
way to improve this issue is to weight the tissue over
the background.

At the same time, the SKI10 evaluation highlighted some
issues on the segmentation of bones. Two limitations of the
approach may drive to this situation. On one hand, high
presence of bias field on a tissue results in a large variation
of intensities within an area of interest. Thus, in the post-
processing step, the initial seeds are not expanded to these
locations with different grey levels. On the other hand, if
there is no contrast between two different areas of interest,
leakages may occur and, hence, a larger difference between
the expected volume and the obtained one takes place. This
situation may be improved by considering higher bias field
correction or contrast-enhancing algorithms.

VI. FINAL REMARKS

An automatic multiresolution atlas-based framework for
segmenting tibia, femur and the cartilages surrounding them
was proposed, implemented and evaluated under the scheme
of the SKI10 challenge.

In short, the proposal considers gathering atlases and
anatomical models for the different classes from a set of
MRI volumes. This information is later used in a Bayesian
classification framework for processing a given image. Then,
the obtained result is used as seeds for a region growing
method based on geodesic active contours in order to obtain
the final segmentation.

The results have shown that the approach was able to
classify tibia and femur with high accuracy compared to
cartilage. However, the score using the evaluation framework
reflected the opposite since it considers some additional
constraints.

Some drawbacks of the proposal were analysed during
the evaluation of the results. It has been highlighted that a
good registration, the assumption of the correct distributions
to describe the anatomical models and, also, a significant
reduction of the bias field are fundamental in order to obtain
accurate segmentations.

VII. FUTURE WORK

We recommend evaluating different ways to improve the
contrast between bones and surrounding tissues such that
the leakage can be avoided and, therefore, the segmentation
results can be improved.

Another future improvement of the presented proposal is
to consider the real distribution of intensities of the different
classes rather than assuming Gaussians or mixtures of them.

Finally, we encourage the readers to consider a Markov
Random Field to regularise the final segmentation results.
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