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Èric Pairet Artau
University of Edinburgh

E.Pairet-Artau@sms.ed.ac.uk

Abstract— Robotics is a multidisciplinary science; solving a
particular problem involves many areas of research. A clear
example is the challenge motivating this work, in which a
robot has to autonomously navigate through a priori known
arena, look for features to localise itself and successfully align
an antenna. This report presents the design of a LEGO robot
which uses a decoupled 2 proportional controller for solving a
point-to-point navigation, uses a modified k-nearest neighbours
classifier to recognise point of interest in an image acquired with
a low-cost camera, and solves the inverse kinematics problem
to align the antenna. The robot is localised using an extended
Kalman filter, which merges the dead-reckoning of an on-
board Hall effect sensor with some feature lines extracted with
two looking-forward infra-red sensors. The robot was tested in
eight-time trials. The antenna alignment success rate was of 8,
5 and 3 out of 8 at the first, second and third point of interest,
respectively. The main limitation of our proposal is that the
localisation algorithm is unlikely to recover the robot’s correct
position once it has misassociated some features.

I. INTRODUCTION

Recent advances in artificial intelligence (AI) are rev-
olutionising the field of robotics at the level of cars au-
tonomously driving in the roads [1] and the Da Vinci robot
being used in real laparoscopy surgery [2]. Ironically, some
of the challenges faced by these cutting-edge robots are
similar to the problems confronted by less impressive ma-
chines, such as the Roomba vacuum cleaner [3]; perception,
mapping, navigation, planning and control are just some of
the fields where any robot struggles at.

Many of the aforementioned fields need to considered
to solve the challenge motivating this work. In summary,
it consists on creating a robot with LEGO able to inspect
a remote location (see Figure 1), i.e. (i) move through a
priori known arena, (ii) detect three point of interest (PoI)
characterised with reflective tape and (iv) correctly align its
antenna to a satellite, the location of which is known.

This work approaches the challenge designing the car-like
robot depicted in Figure 2. The vehicle is equipped with a
set of proprioceptive and exteroceptive sensors which allow
to (i) autonomously drive the vehicle to a desired waypoint
using a decoupled proportional control, (ii) detect the PoIs
on the arena using a modified k-nearest neighbours (KNN)
classifier [4] and (iii) localise itself in the arena by means of
an extended Kalman filter (EKF) [5] and (iv) precisely align
the antenna towards the satellite. These tasks are controlled
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Fig. 1: Schematic of the arena. The black square is the
world’s reference frame, i.e. where the x-axis (red), the y-axis
(green) and the z-axis (blue) cross. On the top left corner,
the satellite. On the top right corner, an example of a PoI.

by a generic framework which allows the robot to operate
autonomously under different challenges setups.

The remainder of this report is organised as follows. The
pyshical platform design and modelisation are described in
Section II. Our proposed framework and used algorithms are
detailed in Section III. Some pieces of the proposal and the
overall framework have been evaluated; the obtained results
are presented and discussed in Section IV. Finally, remarks
and proposals for future work are given in Section V.

II. PHYSICAL PLATFORM

Building a robot (even if it is made of LEGO) is not a
trivial task. Thus, this section describes the designed LEGO
robot and the modelisation of its sensors in Section II-A and
Section II-B, respectively.

A. Design

Aiming to build a compact robot which is easy to deploy
and recover, stable, rotates with respect to its centre of mass
(CM) and allows to easily integrate new sensors, this work
designed and built the robot depicted in Figure 2. Its xyz-
dimensions are 261 × 248 × 287mm, and the location of its
most important sensors is reported in Table I.

The vehicle is driven by two independent active wheels of
82mm of diameter. Each wheel is commanded with a LEGO
43362 motor [6]; the gear train depicted in Figure 3 has
been used to get the wheels turning with an adequate torque
and rpm rate. These two wheels and a castor wheel located
at the front of the vehicle constitute a stable base where



(a) General view (b) Frontal view (c) Side view (d) Bottom view

Fig. 2: Different views of the designed LEGO robot. Labels: (1) camera, (2) Fit-PC2, (3) IR sensors, (4) bumper with
switchers, (5) antenna commanded by the servomotor, (6) light sensors, (7) light bulb, (8) castor wheel and (9) gear trains.

all electronics, the antenna commanded with a HS-322HD
servomotor [7] and the sensors (a low-cost camera [8], a Hall
effect sensor, three P/N 1127 light sensors [9], two SHARP
GP2D12 IR sensors [10] and two micro switches) are stacked
on. All actuators and sensors are centralised in the robot’s
brain; a Fit-PC2 [11].

Element Location [x, y, z]

Wheel (left) [0, 88.5, 0]

Wheel (right) [0,−88.5, 0]

Castor wheel [83, 0,−27]

IR (left) [126, 124, 94]

IR (right) [126,−124, 94]

Camera [151, 0, 208]

Servomotor [−23, 0, 111]

TABLE I: Location of the most important elements with
respect to the robot’s local frame, which is estimated to be
at the height of the main wheels and between them.

B. Modelisation

In order to have an accurate understanding of the robot’s
dynamics and its sensors, this work has modelled the Hall
effect, the IR and the light sensors.

1) Hall effect sensor: is attached to the gear train that
connects a motor with its corresponding wheel. Figure 3
shows that the gear ratio between the sensor and the output
shaft is 25:1. This lets us compute that a pulse of the Hall
sensor can either mean a displacement ∆x = 10.3mm along
the robot’s x-axis or a rotation ∆θ = 6.28◦ with respect to
the robot’s z-axis, as formulated below:

∆x =
1

25
2πRw, (1)

∆θ =
360

2πRr∆x
, (2)

where Rw = 41mm is the wheel radius and Rr = 88.5mm
is the distance from a wheel to the robot’s reference frame.

2) IR sensors: are placed looking forward to measuring
the distance from the vehicle to any obstacle located in
front of it. For that purpose, a model is needed to convert
the IR readings to a metric measurement. Figure 4 reports
the mean and variance of the measurements obtained with

Fig. 3: Schematic of the gear train.

the left and right IR sensors when placing an obstacle at
different distances within the range from 100mm to 800mm
according to the manufacturer specifications [10].

The gathered data depicts that the measurements from the
IR sensors do not have a large variance, thus being a reliable
source for measuring distances. In fact, a model with an R-
square goodness of 0.9965 and 0.9988 for the left and right
sensor, respectively, have been achieved by fitting the data
with the following power model:

distancei = ai ∗ IRbii , (3)

where the subscript i is left (L) or right (R), IRi is the
i sensor’s measurement, and [aL, bL] = [104.2, − 1.104]
and [aR, bR] = [159.2, − 1.196] are the model parameters.

Fig. 4: Measurements from the left and right IR sensors when
placing and obstacle at each 100mm. The mean and variance
at each point are computed using 13, 000 samples.



3) Light sensor: is placed underneath the robot (see
Figure 2d) to detect the illumination changes on the floor. As
reported in Table II, setting a threshold of 50 would allow
detecting when the robot is on top of a PoI. To get a more
robust method (a) a light bulb is placed near the light sensors
to get more contrasted readings (now the threshold should
be set at 225) and (b) acknowledging that the ambient light
might change, the threshold is dynamically set as the initial
reading of the light sensor plus the previously computed 225.

On floor On tape
Without bulb 4 95
With bulb 83 368

TABLE II: Average measurements from the light sensors
under different scenarios (4, 000 samples per scenario).

III. FRAMEWORK AND METHODS
Figure 5 depicts the framework which allows the LEGO

robot to solve the challenge stated in Section I. Such ar-
chitecture consists of four parts: (i) the perception module
analyses the surrounding environment, (ii) a localisation
module estimates the robot’s position, (iii) a control module
operates the robot’s actuators, and (iv) a framework manager
which coordinates all the modules to achieve the predefined
mission “explore the arena, find and locate yourself on top
of the PoIs, and orient your antenna to the satellite”.

Apart from the mission tasks, the robot needs to keep
localised and safe. The framework hierarchically coordinates
all requirements as follows: the vehicle will normally explore
the arena as explained in Section III-A and if it finds a
PoI with the technique disclosed in Section III-B, the robot
will activate the antenna alignment behaviour formulated
in Section III-C. Concurrently, the algorithms described in
Section III-D and Section III-E estimates the robot’s position
and guarantees the robot safety, respectively1.

A. Arena exploration

The exploration of the arena is guided by a manually
planned trajectory (see Figure 6). This approach aims to

Fig. 5: Framework designed for the LEGO robot.

1All code for the reported framework and methods is avail-
able at https://ericpairet@bitbucket.org/ericpairet/
rss_notropis.git. Please contact the author for access permission.

Fig. 6: Manually planned trajectory (green line) which leads
to the strategic angle (red arrow) to look for PoIs.

speed up the PoIs localisation by (a) driving the robot
around the arena through safe paths and (b) placing the robot
where its camera sees the most of the remaining unexplored
arena. Since acquiring a frame in low resolution implies
approximately 2′′, image acquisition and the processing in
Section III-B is only executed in these strategic points.

To drive the robot a specific xy-point with respect to
the world’s local frame, a decoupled proportional controller
which prioritises the heading error is set for each degree
of freedom (DoF) of the robot. Because the robot has not
an infinitesimal precision, some tolerance is allowed to the
linear and angular movements. Independently moving each
DoF avoids having to take into account the non-holonomic
constraints of a classic car-like system [12].

B. PoI detection

Different approaches have been undertaken to detect a pos-
sible PoI in an image: colour segmentation in the RGB and
the HSV spaces (not robust under different light conditions)
lines extraction using the Hough transform [13] (implies the
non-trivial task of selecting the lines of interest), and pixel
segmentation using the KNN [4] and the Extra Trees [14]
classifiers (both have a satisfactory performance but takes
around 90′′ and 10′′ per image, respectively).

The techniques that satisfactorily generalise the segmen-
tation task have a large computation time. Aiming to speed
up the KNN classification, the values for each possible
combination of RGB vectors is pre-calculated and stored in
a 256 × 256 × 256-sized lookup table (see Figure 7). This
pre-processing step allows to obtain the segmentation quality
of the KNN classifier with only 20ms per image, but at the
cost of storing the aforementioned lookup table.

The resulting mask might contain undesired wall areas that
are reflective due to varnish. Leveraging that they are easy to

Fig. 7: Schematic of how the KNN classifier is extracted to
a binary lookup table.

https://ericpairet@bitbucket.org/ericpairet/rss_notropis.git
https://ericpairet@bitbucket.org/ericpairet/rss_notropis.git


segment in the colour space, the wall mask is subtracted from
the PoI mask. The enhanced segmentation let us compute the
rotation needed to head to the PoI as:

θPoI =

(
0.5 − CMx

width

)
∗ FoV, (4)

where CMx is the x-location of the mask’s CM, width =
160 is the low resolution image width and FoV = 60 [8].
After correcting the heading, the robot moves towards the
PoI until the light sensors determine that it got on top of it;
then, the antenna is aligned as formulated in Section III-C.

C. Antenna alignment

Determining the satellite’s location with respect to the
robot’s antenna (aps) is indispensable for suceeding on the
antenna alignment task. This relative position is computed
applying inverse kinematics (IK) as:

aps = rH−1a ∗ wH−1r ∗ wps, (5)

where rHa is the homogenous transformation describing the
antenna’s location with respect to the robot’s frame, wHr

is the homogenous transformation describing the robot’s
location with respect to the world’s frame, and wps is the
satellite’s known position with respect to the world’s frame.

The obtained aps let us compute by means of trigonometry
the angle that both the robot and the antenna have to turn to
get the antenna pointing to the satellite.

D. Robot localisation

The robot is localised in the arena using the EKF [5], [15],
which has been adapted to merge (i) the Hall effect sensor-
based dead-reckoning and (ii) the pose estimation extracted
from the two looking-forward IR sensors. An overview of
the threefold sequence of such filter is given below.

1) Prediction: formulating the dynamics in function of
time turned to be an unreliable approach because the motors’
performance depends on the battery’s voltage. Thus, the
robot’s position is predicted using the Hall effect sensor.
For each obtained pulse, the current robot’s motion is
used to quantify a local xyθ-movement: [∆x, 0, 0] (for-
ward), [−∆x, 0, 0] (backward), [0, 0, ∆θ] (left turn) or
[0, 0, − ∆θ] (right turn). Finally, the robot’s new position
is predicted by compounding (non-linear operation) the local
motion to the previous robot’s location.

2) Data association: due to the fixed location of the IR
sensors, this step starts by stopping the vehicle and turning
it towards the expected nearby features, i.e. any wall within
the sensors range. This routine is done (i) periodically each
75cm, (ii) before aligning the antenna and (iii) when an
unexpected obstacle is found on the way.

Regarding the EKF algorithm itself, any observed wall is
encoded as a polar line. The Mahalanobis distance between
the observed feature and each line composing the a priori
known map is computed. Among all the comparisons, the
smallest Mahalanobis distance is kept and if it is smaller
than a chi-square χ2

ρ,ϕ test threshold, the line is considered
associated. This work has set the chi-square threshold for
2 DoF and a 95% of confidence, i.e. χ2

2,0.95 = 0.103.

3) Update: this step has not been adapted for this work,
so it makes use of the standard linear equations of the EKF
to update the robot’s state estimation.

E. Obstacle avoidance

The robot is not meant to collide because (i) follows a
predefined collision-free trajectory and (ii) moves towards an
obstacle which is in its field of view (FoV). However, this
reasoning only holds if the robot’s localisation is constantly
accurate. Thus, aiming to guarantee the robot’s safety, a two-
layered obstacle avoidance is included in the framework.

The first layer is conservationist; uses the IRs sensors
to detect nearby obstacles. Because the IR sensors have a
blind spot [10], the second layer uses the switches located at
the front bumper of the robot. In both cases, the vehicle is
immediately stopped to localise itself back. Then, the vehicle
gets to the desired point, if needed, surrounding the obstacle
using the Bug tangent algorithm [16].

IV. EXPERIMENTAL EVALUATION

This section evaluates the most important parts of the
proposed framework and the overall performance of it.
Specifically, the PoI detection approach is analysed in Sec-
tion IV-A, the accuracy of the localisation system is dis-
cussed in Section IV-B and finally, the overall framework is
quantitatively evaluated in Section IV-C.

A. PoI detection

Figure 8 illustrates all the methods that have been tested
to detect PoIs in an image. As reported in Section III-B,
the selected approach is a modified KNN classifier able
to segment a low resolution frame in approximately 20ms.
Such method has been exhaustively checked, showing a high
level of robustness under different environmental conditions.
However, (i) the camera has a blind spot on the imminent
area in front of the robot and (ii) the undertaken approach
does not succeed on segmenting PoIs located further than
approximately 1m from the camera. This might be due to
the lack of training samples at this distance.

B. Robot localisation

According to the Hall effect sensor modelisation (see
Section II-B.1), the dead-reckoning-based localisation has
an accuracy of 10.3mm and 6.28◦ for linear and angular
movements, respectively. Many efforts were made to get a
higher localisation accuracy out of this sensor by placing it
nearer the motor shaft, but the Phidget board only handles
125 samples per second [17].

A graphical user interface (GUI) has been set up to verify
that the programmed EKF performs as expected. Because the
Fit-PC2 has a lack of plotting libraries, such GUI runs in
local while taking the information of interest through secure
shell (SSH). The normally observed EKF’s behaviour is an
uncertain estimation of the robot’s true position when only
predicting (see Figure 9a), which is bounded and updated
after associating the observations (see Figure 9b and Fig-
ure 9c). In each association the uncertainty only gets bounded



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 8: Automatic detection of PoIs. First row: (a) training image, (b) segmented image using a colour space, (c) segmented
image using Extra Trees classifier, (d) segmented image using the modified KNN classifier, and (e) computed mask’s CM.
The second row: (f) validation image, (g) segmented image using the same thresholds as in image (b), (h) segmented image
using the Extra Trees classifier, (i) segmented image using the modified KNN classifier and (j) computed mask’s CM.

to the perpendicular axis of the wall, thus needing at least two
associations in different headings for accurately estimating
the robot’s true position. Even though the performance of
the EKF is generally satisfactory, sometimes fails the data
association; it misassociates the observed feature with one
of the walls at 45◦. Then, the robot’s heading gets an error
of approximately 45◦, from which the EKF is unlikely to be
recovered. Being able to monitor the robot’s behaviour has
been crucial for understanding this fact.

C. Overall framework

The overall framework has been tested in eight-time trials.
At each trial, one of the fixed PoI was hidden and some
reflective tape was placed in a new location. The robot got
to the first PoI 8 out of 8 (8 well localised), to the second PoI
6 out of 8 (5 well localised) and to the third PoI 5 out of 8 (3
well localised). When the robot localisation is accurate, the
antenna alignment behaviour always succeeds. The average
time to complete an entire mission is of 4’20”.

In the day of the challenge, the robot scored 12 points out
of 16; it found and got well localised to 2 of the existent
PoIs on the arena. While looking for the third PoI, the robot
got lost and the images were not gathered in the correct
orientation. Thus, the robot never got to the third PoI.

V. DISCUSSION AND FUTURE WORK

This paper has presented a LEGO robot prototype and a
framework which jointly addresses the proposed challenges
on autonomous navigation, feature detection, IK and localisa-
tion. The proposal was tested in eight-time trials, in which the
antenna alignment succeeded 8, 5 and 3 out of 8 at the first,
second and third PoIs, respectively. The results demonstrated
the suitability of both the robot’s design and the framework to
approach different challenge setups, but further work needs
to be done to increase the robustness of the system.

Building a lookup table for rapidly knowing the KNN
classifier decision has been crucial for accomplishing the
challenge within the given time. However, exploring ways

(a) (b) (c)

Fig. 9: Robot’s pose estimation using an EKF-based localisaiton. Robot’s pose estimation uncertainty (purple), perceived
wall (thick green line) and associated line from the a priori known map (red). (a) Predicted robot’s position after many
iterations, (b) data association and robot’s position update (note the angle change), and (c) data association and robot’s
position update. Note that the uncertainty has been exagerated for visualisation purposes.



of acquiring images in real time would allow using the
camera on a regular basis. A more robust localisation system
was expected when choosing the EKF. The main limitation
is the need of rotating the whole robot to detect nearby
features. Assembling the sensors on a rotating platform
would drastically reduce the number of robot manoeuvres.
Moreover, because there are cases where the EKF does
not recover the correct robot’s localisation, a particle filter
approach would be worth to explore.
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