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HERIOT-WATT UNIVERSITY

Abstract

Tracking of Minimally Invasive Surgery

Tools for Skill Assessment

by Èric Pairet

Jose Bernal

Rodrigo Daudt

Minimally Invasive Surgery is a specific surgical technique in which tools are inserted into the

patient through small incisions on the body. Although the use of this kind of techniques has been

increasing throughout the years since the traumas to the patient are reduced, the procedure

is still challenging for surgeons due to the complexity that it supposes. The most critical

drawback is that depth information is lost since a single camera is used during the operation.

To overcome this situation, surgeons must train for several and expensive sessions to use the

video feed to correctly operate the tools. Thus, identifying the flaws of each subject while

performing training tasks is of interest. This process has been widely addressed in the literature

by combining tracking and computer vision techniques for estimating the path executed by the

trainees, but, to the best of the authors’ knowledge, the obtained track has not been used for

determining the level of skill of a subject. We propose a framework for tracking MIS tools on

laparoscopy training environments and assessing the subjects based on the described paths. Due

to the lack of data of skilled and unskilled persons, the assessment part of the project was only

tackled theoretically. Results of the framework indicate that the proposal is able to produce

results that look like the actual trajectory and that the maximum error when performing the

same experiment several times is of the order of 12mm. Also, the features extracted from the

synthetic data suggest that the considered measures may be useful for determining how skilled

is a subject. However, further experiments on real data should be carried out to validate this

assertion.



Contents

Abbreviations iv

1 Introduction 1

2 Problem analysis 5

3 Project management 8

4 Considered methods 10

4.1 Camera calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Tool detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.1 Tool segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.1.1 Motion segmentation . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.1.2 Colour segmentation in the distance space . . . . . . . . . . . . 15

4.2.1.3 Colour segmentation in the RGB space . . . . . . . . . . . . . . 17

4.2.2 Tip localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Tool pose estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 3D pose estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1.1 Pinhole camera model . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1.2 Edge-crossing planes . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.2 Data filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Skill assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Framework design 31

5.1 Framework 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Framework 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Implementation 38

6.1 Camera calibration toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Deciding the colour of the markers . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3 Pixel classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.4 Tip detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.5 Kalman filter parametrisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.6 Speeding up the framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.6.1 Multi-scale segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.6.2 RGB classification pre-computation . . . . . . . . . . . . . . . . . . . . . 43

ii



Contents iii

7 Results and evaluation 44

7.1 Implemented part of the framework . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.1.1 Single component evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.1.2 General evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.1.2.1 Trial 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.1.2.2 Trial 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1.3 Quantitative evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1.4 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2 Theoretical part of the framework . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 Final remarks 58

Bibliography 60



Abbreviations

CAD Computer-Aided Design

DOF Degree Of Freedom

EKF Extended Kalman Filter

FOV Field Of View

FPS Frames Per Second

HSV Hue Saturation Value

KF Kalman Filter

KNN K-Nearest Neighbors

LED Light Emitting Diode

LMS Least Mean Squares

MIS Minimally Invasive Surgery

RAM Random-Access Memory

RANSAC RANdom SAmple Consensus

RGB Red Green Blue

ROI Region Of Interest

SVM Singular Value Decomposition

UKF Unscented Kalman Filter

iv



Chapter 1

Introduction

Minimally Invasive Surgery (MIS) is a subgroup of surgical techniques that aim to reduce the

damage done to the human body during surgery. Laparoscopy, a type of MIS, consists on

inserting a laparoscope and thin, long tools into the abdominal or pelvic region through small

incisions on the skin, while pumping an inert gas into the patient’s body to allow for the

movement of the tools. This procedure exchanges a large incision by a few small ones, reducing

the risk of infection and time of recovery.

While laparoscopic techniques reduce the damage done to the patient’s body, the techniques

used in laparoscopic surgery are complicated and require lengthy training since the laparoscopic

set-up provides a limited Field Of View (FOV), reduces hand-eye coordination and leads to loss

of depth information. The surgeons must be trained to use the video feed from a single camera

to be able to operate the tools accurately.

Tool tracking systems for laparoscopic setups have been proposed. Some use specialised hard-

ware to perform electromagnetic, mechanical, or sonic localisation of the laparoscopic tools Tonet

et al. [2007]. These systems increase the cost and the size of the equipment used for laparoscopic

surgery and therefore are not ideal. Another option is to use computer vision techniques on the

video feed which is already available to estimate the position of the laparoscopic tools relative

to the laparoscope.

Visual tracking of laparoscopic tools is a problem currently being tackled by researchers. Track-

ing the tools is useful for many different purposes. First, it can be used in computer-assisted

surgery systems as a base for augmented reality systems that can help to guide the surgeon

1



Chapter 1. Introduction 2

during the medical procedure. A sufficiently accurate system may one day be used on an au-

tomatic robot surgeon, which could be able to assist a trained surgeon during the laparoscopic

surgery. Finally, tool tracking can be used during the training of new surgeons. The tracking

can assist the trainees by identifying their mistakes, by assessing their general skill level based

on recorded data and to evaluate the trainees’ progress.

Tracking methods for laparoscopic tools have already been proposed. These methods estimate

the XYZ coordinates of the laparoscopic tools relative to the camera coordinate system. Some

of them estimate also the rotation and grasper angles of the tools or the inclination of the tools

for a more informative tracking. Methods with and without markers have been proposed with

different rates of success.

Hulke and Gupta [2014] proposed a method with simple markers added to the tools which were

tracked using the Kalman Filter (KF). The proposed markers were spheres with a saturated

colour, that should be attached to the tools, facilitating the segmentation. Since these markers

are actually coming out of the tool, the strongest flaw of the approach is that it changes the

shape of the laparoscopic tool to something that is much harder to be inserted in the human

body during a real surgery. Also, the markers are not visible for some rotation angles and, thus,

the estimation of XYZ is limited. This technique has been tested with some degree of success

on a simplified set-up where the laparoscopic tool was substituted by a simple stick with the

addition of the markers.

Shin et al. [2014] introduced a method with an elaborated 5-part marker on each tool which

allows for the measurement of the XYZ coordinates of the tool tip, the rotation angle of the

tool and the opening angle of the grasper. The marker consisted of three main rings for XYZ

estimation, one extra ring for estimating the grasper angle, and one helicoidal mark which

enables to calculate the rotation angle. This method takes advantage of the colour of the markers

in the HSV colour space to segment the tool from the background. Additionally. the authors

considered a KF approximation in case the detection was not successful due to, for instance,

crossing markers. This technique obtained good results, achieving errors of approximately 5mm

in their tests. However, this accuracy comes at the cost of the addition of an elaborate marker

to each tool which has to be completely visible all the time.

Tonet et al. [2007] proposed a tracking method that used a single cylindrical marker on each

tool to facilitate the segmentation. In this case, the authors considered a marker which was

distinguishable from the background in the HSV colour space. By using the pinhole camera
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model and proportions between the width measured in the image plane with respect to the prior

knowledge of the tool in the real world, the position and inclination angles of the tools relative

to the camera coordinate system were estimated. As stated by the authors, this approximation

is only suitable for applications in which accuracy is not critical since small miscalculations in

the image plane may lead to high inaccuracy in the estimated pose.

Zhou and Payandeh [2014] proposed a tracking method that used no markers on the laparoscopic

tools. Unlike the previous approaches, this approach was tested on real surgical video sequences

and, thus, although the scenario gets more complicated in terms of tracking the movement of

the tools and illumination conditions (e.g. some tissues may reflect the light coming from the

lighting source), the scenario brings two advantages: (i) the camera is placed directly on top of

the laparoscopy tools and, hence, assumptions for calculating the depth of the tool discussed

later in this paper are considered, (ii) although there might be some shadows due to poor

lighting conditions on the boundaries of the image, the black tube can be easily recognised since

there is no tissue which appears in black and, consequently, accurate segmentation on the red

channel is easily achieved. In this case, the method contemplates tracking the middle line of the

segmented tools using the Extended KF (EKF) to cope with non-linearities. The method was

able to achieve acceptable performance in high-quality videos in which high contrast between the

tool and the background is observed, but it failed when the conditions were less than optimal,

i.e. a very controlled environment is required for this method to work which is not usually the

case.

Summarising, the literature suggests that:

• Marker-based approaches should be considered when high accuracy is required in un-

controlled environments. However, this feature is not completely necessary in training

environments and, hence, we do not discard completely the idea of using a markerless

approximation.

• Regardless the configuration, colour is a key feature for differentiating between the laparo-

scopic tools and the background. Note that colour could be ideally complemented with

other types of features to enhance its performance.

• Pose estimation with a single camera is an ill-posed problem and, hence, prior information

should be added in order to obtain stable and realistic results. The problem is often
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addressed by computing proportions between the observed width of the tool in the image

plane and the information of the tool in the real world.

• Tracking algorithms such as KF or EKF are commonly used for dealing with wrong or

missing observations.

Based on the works in the state-of-the-art, in this paper, we present a framework for tracking

minimally invasive surgery tools for assessing trainees while they perform some tasks. The

framework is two-fold: tool tracking and skill assessment. The process starts when a video

sequence is gathered from the training system and processed to estimated the 3D position

with respect to the camera. Once the full trajectory executed by the operator is obtained, the

next step consists in evaluating how skilled is the trainee based on metrics over the computed

trajectory.

The report is structured as follows. Having in mind the brief discussion of methods adopted

in the state-of-the-art of tracking tools for minimally invasive surgery and the characteristics

of our specific scenario (i.e. training centre), the possible advantages and limitations as well

as the initial workflow of the system are outlined in Chapter 2. The project was then divided

into smaller tasks and, thus, in Chapter 3, we describe how this project was managed from the

planning to the actual implementation and evaluation. Chapter 4 contains information relating

all the techniques that we considered for elaborating this project and, in Chapter 5, we explain

and criticise the different frameworks that we were able to develop. Chapter 6 is dedicated to

describe details of the actual implementation of the final framework. Then, the obtained results

with the proposed approach are presented and discussed Chapter 7. Finally, some final remarks

and future work are stated in Chapter 8.



Chapter 2

Problem analysis

After reviewing the state-of-the-art on tracking of laparoscopic tools, an exhaustive evaluation

of our problem was performed. The aim of such analysis was to come up with the most suitable

approach to successfully track the laparoscopic tools, extract the executed path and finally

assess the subjects.

The overall process starts with a subject performing specific training activities in the laparoscopy

training centre displayed in Fig. 2.1. As the operator performs the assigned task, a video

sequence is acquired.

Figure 2.1: Laparoscopic training centre.

Taking into account the high distortion in the raw images gathered from the laparoscopic training

centre, which can be seen in Fig. 2.2, a camera calibration procedure should be considered at

the very beginning of the proposed framework.

5
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Figure 2.2: Raw frame acquired using the camera in the training centre.

Once the radial distortion of the lens has been corrected, the tracking of the tools can be

performed in a more realistic representation of the scene. In this context, the concept of tracking

includes two keystones of the project, which are detection of the tool and estimation of its

position in the space. Out from these estimations, the 3D trajectories followed by the tools can

be reconstructed.

The interest of obtaining the paths of the tools is that they can be used to assess the skills of

the subjects training with the laparoscopic centre. The authors of this work think that training

a classifier using features from tool paths from skilled and unskilled surgeons might be a good

approach to assess the experience of the subject being evaluated.

To sum up, the described workflow is illustrated in Fig. 2.3, with which the authors expect to

successfully address this challenging project.

Figure 2.3: Proposed workflow.

From this initial analysis of the problem and considering all the work seen in the state-of-the-art,

the following points have to be highlighted:

• Taking into account the type of distortion on the gathered frames, the camera calibration

process has to be able to model the radial distortion of the lens.



Chapter 2. Problem analysis 7

• Since the tools are the main object moving around the scene, a motion-based detection

approach is explored. Also, the dark colour of the tools can be leveraged to distinguish

them from the background. However, the presence of glare and shadows might result in a

handicap.

• Mathematically, estimating the position of an object with a single-camera based system

with no additional information is not possible. Thus, considering the homogeneous cylin-

drical shape of the tool is necessary to relax the constraints of a single-camera based

system.

• Even though a proper review of the state-of-the-art on feature extraction of trajectories has

not been done, its length, duration and smoothness seem to be important characteristics

to determine the skills of the subject on evaluation.



Chapter 3

Project management

When working in a team, the project management takes special importance. A bad organisation

may lead to unnecessary waste of time, efforts and, consequently, penalise the final work. This

is why we have used two platforms to organise the tasks and synchronise the work.

A platform called Bitbucket has been used to share the code and data, keep track of all the

changes, notify the issues found during the implementation and assign tasks to the members of

the group. Another one named Overleaf has been used to write the three presentations and the

final report required throughout the Robotics Project subject in an efficient and collaborative

way. This platform allows all the members of the group to edit LATEX documents at the same

time.

After the state-of-the-art review done in Chapter 1, the problem analysis introduced in Chapter 2

and considering the three presentations that had to be carried out throughout the course, the

different tasks of the project were scheduled as shown in Fig. 3.1. This Gantt chart indicates in

blue the planned duration of each task, while the real one is indicated in red.

In the Gantt chart above, the first week of the project corresponds to the third week of the

semester. Then, it can be seen that we started working on the project as soon as it was assigned

to us. All the intermediate deadlines, i.e. Checkpoint 1, Checkpoint 2, Reading group and

Final presentation, have been accomplished in time. Some of the other planned tasks have

been slightly delayed because they supposed a bigger amount of work than what it was initially

expected.

8
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Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9

State-of-the-art

Checkpoint 1

Camera calibration

Tool detection

Pose estimation

Integration

Algorithm improvement

Reading group

Data comparison

Checkpoint 2

Final presentation

Report and demo prep.

Figure 3.1: Gantt chart. Expected and final duration of each task respectively indicated
in blue and red.

Regarding the Data comparison task, it has been finally reduced to a theoretical proposal; the

necessary data for this step was provided to us by the sixth week when the project was already

oriented to be compatible with scenarios similar to the one of the laparoscopic training centre.

However, (i) the scenario in the given videos had a lot of black areas, (ii) the tool was moving

extremely fast, and (iii) the tool was outside the field of view of the camera a considerable

portion of the time. Despite this fact and the previously mentioned delays, the overall proposed

approach has been successfully finished in time.

Even though some of the tasks have been done individually by one member of the group, the

peer-review process forced the others to understand, check, criticise and correct the others’ code.

Only in that way, an equivalent amount of work can be attributed to all the members of the

group. Additionally, the preparation of the presentations and the creation of the final report

has been carried out simultaneously by all the members of the group.



Chapter 4

Considered methods

During the development of the framework for tracking the laparoscopic tools and assessing

the skills of the subjects on evaluation, different methods have been tried. Thus, the aim

of this section is to describe them before going into details of the final framework and its

implementation.

Accordingly to Chapter 2, the workflow of the proposed approach is composed by four main

parts: camera calibration, tool detection, pose estimation and skill assessment, which will be

respectively addressed in Section 4.1, Section 4.2, Section 4.3 and Section 4.4, in that order.

4.1 Camera calibration

In Chapter 2, it has been stated that correcting the distortion of the gathered sequence of

frames is indispensable for working with a more realistic representation of the scene. This

implies knowing the model that allows us to place each pixel {ũRj ṽRj } from the gathered image

J̃ (Fig. 4.1a) to its correct position {uRj vRj }, thus composing an undistorted image J (Fig. 4.1b).

Note that such transformation is referenced to a specific reference frame {R}, which can be either

the image frame {I} or the camera frame {C}. An accurate representation of the model of the

camera takes into account both the camera intrinsic parameters and the lens distortion.

The camera intrinsic matrix is the basis of the well-known pinhole camera model Zhang [2000]

introduced in Eq. 4.1. With such model, a point {xCj yCj zCj } represented with respect to the

camera frame {C} can be projected onto the image plane I. Note that this model is linear and

10
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(a) (b)

Figure 4.1: Aim of camera calibration MathWorks [2016b]. (a) Gathered image J̃ , (b)
undistorted image J .

considers the absence of lens on the camera.
uIj

vIj

1

 =


fx s uCI

0 fy vCI

0 0 1



xCj

yCj

1

 , (4.1)

where fx and fy are the focal length in the x-axis and y-axis, respectively, s determines the

skew of the pixels and {uCI vCI } describes the central point of the camera, i.e. the translation

from the image frame {I} to the camera frame {C} in the x and y axis, respectively.

The effect of the lens on the projection is usually modelled by considering the radial and tangen-

tial distortion that they induce to the system Heikkila and Silven [1997]. The former distortion

is modelled according to

ũCj = uCj

(
1 + k1r

2 + k2r
4 + k3r

6
)
, (4.2)

ṽCj = vCj

(
1 + k1r

2 + k2r
4 + k3r

6
)
, (4.3)

where the set of parameters k1, k2 and k3 model the radial distortion, {uCj vCj } the location of

an undistorted pixel with respect to the camera frame {C}, {ũCj ṽCj } the location of a distorted

pixel with respect to the camera frame {C} and r is the Euclidean distance from the pixel

{uCj vCj } to the camera frame {C}.

The same notation can be used to define the tangential distortion induced by the lens as

ũCj = uCj +

(
2p1u

C
j v

C
j + p2

(
r2 + 2(uCj )2

))
, (4.4)

ṽCj = vCj +

(
p1

(
r2 + 2(vCj )2

)
+ 2p2u

C
j v

C
j

)
, (4.5)

where p1 and p2 are the parameters modelling the radial distortion.
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Using these equations, the pinhole camera model can be extended to consider the distortion

induced by the lens into the projection. In fact, the derivation of this set up leads to the Jean-

Yves Bouguet model with 10 parameters Bouguet [2010]. Note that due to the non-linearity of

the lens model, the extended model is non-linear too. Thus, the Jean-Yves Bouguet model uses

an iterative process to calibrate the camera.

4.2 Tool detection

Estimating the position of an object in the space requires establishing a point of reference.

When it comes to the laparoscopic tools, such task is not easy due to the lack of features; as

shown in Fig. 4.2, a homogeneous black tube and a shape variant jaw is everything that is

observed about the tools.

Figure 4.2: Main parts of a laparoscopic tool.

Many works on the state-of-the-art use the tip of the homogeneous black tube, i.e. the tip, for

tracking the tool position. Due to the suitability of such approach in the current project, the

authors considered to perform it in two steps: (i) segmenting the tool from the background,

and (ii) localising the tip of the tube. The methods to cover these two tasks are respectively

discussed in Section 4.2.1 and Section 4.2.2.

4.2.1 Tool segmentation

Once the images are initially preprocessed, the second task consists in separating the different

regions of interest from the rest of the scene so that they can be analysed in later steps. This

can be addressed by considering segmentation algorithms.

In the following sections, we analyse three strategies for performing segmentation in the two

cases presented in the literature: markerless and marker-based. Note that the techniques are

not exclusive and, hence, might be combined for achieving more refined results.
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4.2.1.1 Motion segmentation

Since our problem consists in classifying trainees based on the way they perform the proposed

activities on the laparoscopic environment, the first approach we considered took advantage of

the movement of the tools for differentiating them from the background.

Motion segmentation consists in thresholding the difference between the input frame I(x, y, t) at

time-step t and the corresponding estimate of the background at the same time-stepB(x, y, t) Yang

et al. [2012], as described in the following expression:

F (x, y, t) =
[
|I(x, y, t)−B(x, y, t)| > τ

]
, (4.6)

where τ is a tolerance threshold. If the difference value is above τ , the pixel belongs to the

foreground, and background otherwise. An example of how the method processes an input

image is shown in Fig. 4.3. Note that, under this paradigm, motion segmentation requires to

have a background estimation at each iteration.

(a) (b)

(c) (d)

Figure 4.3: Execution of the method. (a) Current image, (b) image composed of the
means of the most probable distributions in the background model, (c) foreground
pixels, (d) current image with tracking information Stauffer and Grimson [1999].

In general, two main branches for backgrounding are presented in the literature: non-adaptive

and adaptive methods. On one hand, the former strategy consider representing the background
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based on a certain reference frame (e.g. individual pixel-wise voting method) or a set of previous

inputs (e.g. mean value search). On the other hand, the latter approach involves fitting single

or multiple distributions to the background, commonly Gaussian distributions Friedman and

Russell [1997], Koller et al. [1994], Ridder et al. [1995], Stauffer and Grimson [1999], in order to

achieve robustness against significant changes in the scene, issues caused by lighting conditions,

among others.

For implementing motion segmentation, we adopted the adaptive background Gaussian mixture

models approach presented by Stauffer and Grimson Stauffer and Grimson [1999]. The main

idea behind this technique is to describe the history a pixel in the scene at time-step t, denoted

by Xt, using a mixture of k Gaussian distributions as follows:

P (Xt) =
k∑

i=1

ωi,t · N (Xt| µi,t,Σi,t), (4.7)

where ωi,t, µi,t and Σi,t are the normalised weight, the mean and the covariance matrix of the

i-th Gaussian at time-step t, respectively. These Gaussian distributions are updated as the

frames are processed and, specifically, they are adjusted every time a Xt matches one of them.

The update is formulated as

ωi,t = (1− α)ωi,t−1 + αMk,t, (4.8)

where α ∈ [0, 1] is the learning rate and Mk,t is a flag which is set to 1 if Xt is described by

the k-th Gaussian distribution and 0 otherwise. The impact of the parameter α is illustrated in

Fig. 4.4. It can be observed that as the value of α increases, the mixture tends to believe more

in the observations and, thus, noise might be introduced to the model. On the contrary, a low

value of α means that the observation is not taken into account and, hence, the weights may

not change.

There are three assumptions the authors follow to hypothetise the background distributions:

(i) during the entire video, the background distributions have the most supporting evidence

and least variance, (ii) the variance of a distribution resembling a moving object is expected

to be larger than the one of the background, and (iii) new objects in the scene may require

new distributions or increase the variance of one already in the mixture. Having this in mind,

the ratio ω/σ, being ω the weight of the Gaussian within the mixture and σ its corresponding

standard deviation, is high when the Gaussian represents the background. Thus, the authors

suggested to approach the selection of the background distributions heuristically by taking the
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(a) Original (b) α = 0.005

(c) α = 0.05 (d) α = 0.5

Figure 4.4: Impact of the parameter α on the segmentation result.

first b distributions (according to the mentioned ratio) satisfying the following expression

B = arg min
b

 b∑
k=1

ωk > T

 , (4.9)

where T ∈ [0, 1] the minimum portion of background within the entire mixture. The effect of

this parameter is depicted in Fig. 4.5. It can be observed that small values of T will discard

several Gaussian distributions and, hence, it is not expected to have “memory” of the movement

that was happening in the scene. On the other hand, the background becomes a multi-modal

distribution with larger values of T and, thus, when an object stops moving, it is still segmented

as it was moving for several frames.

4.2.1.2 Colour segmentation in the distance space

Assuming that the tool differs from everything else in the background in terms of colour, we

can think of using colour segmentation. As shown in Fig. 2.2, the tool tube is black while most

of the objects in the scene are colourful, i.e. there is high contrast between what is of interest

and what is not.

Taking advantage of the fact that darker colours present low intensities in each of the RGB

channels, a different domain with only one channel describing the euclidean distance a pixel

in RGB has with respect to the origin {0, 0, 0} could be considered. For example, the pixels

with RGB intensities {200, 50, 100} and {10, 20, 30} would be mapped in the distance space to
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(a) Original (b) T = 0.1

(c) T = 0.7 (d) T = 0.9

Figure 4.5: Impact of the parameter T on the segmentation result. The image is taken
from a video sequence in which the tools are moving in the training environment.

the intensities 248.74 and 37.42, respectively. A visual example of how images look like in the

mentioned space is shown in Fig. 4.6.

(a) RGB space (b) Distance space

Figure 4.6: Image representation in the RGB and distance spaces. Note that the
intensity range of the distance image has been altered.

The interesting part of using the distance space is that the dark colour of the tool can be easily

distinguished from the rest if and only if the illumination in the scene favours the assumption

that other regions in the scene are not as dark as the tool. It can be observed in Fig. 4.6 that

the top right corner does not fulfil this assumption. But, since it would be used along with

motion segmentation, the approach should easily remove this non-important regions (as long as

the tool is not in contact with these regions).
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4.2.1.3 Colour segmentation in the RGB space

As we have discussed previously, most of the approaches in the literature use markers for easing

computation while decreasing inaccuracies during the segmentation and, consequently, the pose

estimation.

The key under this approximation is to consider markers which are sufficiently distinguishable

from the other objects in the scenario so that the segmentation errors are reduced. Note that the

concept of markers being distinguishable depends not only on the colour they exhibit, but also

on the colour space which is taken into account for performing the processing. Different colour

models are used as proxy for segmenting the markers, such as RGB, HSV, Lab, among others.

Each of them exhibits interesting properties as a consequence of the way they characterise

colour Gonzalez and Woods [2006]. Also, observe that less computation is required if the

markers are easy to discriminate in the colour space in which they are given.

The representation of an image taken from the training environment once the markers are set

on the tools in RGB, HSV and Lab colour spaces is presented in Fig. 4.7. Note that for the sake

of uniquely identifying the tools, we selected two different colours of markers. The criteria for

choosing them will be discuss in coming sections. It can be seen that the orange marker is easily

spotted in the channels: red, blue, value, and b; while the purple marker in channels: red, blue,

hue, value, lightness, and a. Having these facts in mind, we decided that RGB was enough for

performing marker segmentation. Note that this selection is based on the specific configuration

of the training scenario and it may vary depending on the colours of the background.

Once the colour space is selected, the next step consists in determining the method for perform-

ing the segmentation. Two approaches can be found in the literature for performing the colour

segmentation: thresholding in the different channels with fixed values and learning-based tech-

niques. In the case of the former, the computation is quite fast, but the values might be scene

dependent and, in general, it is not robust to changes in the lighting conditions. In the case of

the latter, the computation is more costly than in the former approach and requires a training

step, but it can cope with lighting distortions. Since the camera has some LEDs, the training

environment exhibits different lighting conditions, i.e. the image appears brighter in places close

to the centre of the image plane and darker on the boundaries of the same. Therefore, the most

suitable approach is the learning-based technique.
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(a) Original

(b) Red (c) Green (d) Blue

(e) Hue (f) Saturation (g) Value

(h) Lightness (i) a (j) b

Figure 4.7: Original image and its corresponding representation in RGB, HSV and Lab
colour models
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4.2.2 Tip localisation

The localisation of the middle point of the tip solely relies on the obtained segmentation of the

tool. In order to detect the tip of the tube out of the binary mask coming from the segmentation

of the tool, the following three steps are considered:

1. Detection of the borders of the tool

2. Computation of the middle-line

3. Intensive search of the tip along the middle line

Firstly, lines are detected on the binary mask for identifying the boundaries of the tool. For

this purpose, two approaches were considered: the well-known Hough transform and an ad

hoc approach. The former operates using the following steps: (i) borders of the binary mask

are detected using, for instance, the Canny edge detection algorithm, (ii) the Hough space is

computed and (iii) only lines supported by a significant number of points are finally considered.

This method requires the modelled geometrical figure to be well-defined in the image, but this

might not be always the case of the obtained segmentation.

Taking into account such strong condition, the authors considered appropriate to design an ad

hoc approach consisting of the following steps: (i) the information obtained from the segmenta-

tion, i.e. the binary mask and the bounding box of the Region Of Interest (ROI) (Fig. 4.8a) is

used to place a grid on the segmented tool (Fig. 4.8b), (ii) the borders of the blob are computed

using the Canny edge detection algorithm, allowing to (iii) specify some points laying on the

borders of the tools (Fig. 4.8c), which are used to (iv) fit a line characterising the whole edge of

the tool (Fig. 4.8d). The orientation and number of lines that compose the grid will be discussed

in Chapter 6.

At the end, the approach working the best and at the same time being computationally efficient

would be chosen for detecting the boundaries of the tool.

Secondly, once obtained the borders of the tool and indifferently from the approach used for

computing them, the next step is determining a middle-line, i.e. a line which divides the tool

into two identical parts through its longitudinal axis, as shown in Fig. 4.9. For this purpose,

some middle-points are computed by averaging the location of a pair of points, each one of them

laying on a different side of the tool. Then, the obtained set of middle-points is used to fit the
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(a) (b)

(c) (d)

Figure 4.8: Ad hoc approach for identifying the edges of the laparoscopic tool. (a)
Information obtained from the segmentation process, (b) placement of the grid within
the bounding box, (c) localisation of points laying on the borders of the tool, (d) full
characterisation of the borders of the tool.

middle-line of the tool using either Least Mean Squares (LMS) or RANdom SAmple Consensus

(RANSAC). The approach used to fit the lines will be discussed in Chapter 6.

Figure 4.9: Computed middle-line of the tool.

Finally, the problem of localising the tip is reduced to perform an exhaustive search throughout

the middle-line, as exemplified in Fig. 4.10. Such search starts from one of the previously

computed middle-points and moves towards the location of the tip, until a significant amount

of zeros, i.e. area not belonging to the tube, is found in the mask. How the search direction

along the middle-line is decided will be detailed in Chapter 6.
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Figure 4.10: Localisation of the tip.

The lines computed to locate the tip of the tool can be useful to extract the width of the tool

in the image, which might be useful for later algorithms. To extract such information, (i) a

perpendicular line to the middle-line has to be computed (Fig. 4.11a) and (ii) the intersection of

it with the edges of the tool have to be determined (Fig. 4.11b). Then, the Euclidean distance

between both intersections will determine the width of the tool in the image.

(a) (b) (c)

Figure 4.11: Characterisation of the width of the tool. (a) Computation of the per-
pendicular line to the middle-line, (b) characterisation of the width of the tool, (c)
correspondence between the extracted information and the original frame.

At the end, Fig. 4.11c proves that even though the detection and width characterisation of

the tip of the tool is done in the binary space, the extracted information accurately describes

the tool in the input frame. Moreover, note that doing the same approach in the input image

would not be possible due to the existence of many geometrical forms, including the one that

the proposed method relies on.
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4.3 Tool pose estimation

At this point, some methods for identifying a specific position of the tool at each frame have been

introduced. Thus, assuming the correctness of the obtained information out of those methods,

the extraction of the position of the tool is twofold: first, the 3D position is estimated with a

single-camera, and second, the obtained set of positions are filtered to remove the noise. These

two parts are respectively tackled in Section 4.3.1 and Section 4.3.2.

4.3.1 3D pose estimation

A stereo-vision system is usually required for determining the 3D position pR = {xR yR zR}T of

an object with respect to a reference frame {R}; aiming to achieve the same task with a single-

camera system leads to an ill-posed problem. Thus, the latest approach will only be useful

to create depth maps or to estimate the 3D position of an object if additional information is

available, e.g. odometry of the camera or known dimensions of the objects in the scene among

others.

In the laparoscopic environment presented in Chapter 2, the location of the camera C with

respect to the world frame {W} can be assumed to be static but it is unknown. Therefore, the

3D pose pCi = {xCi yCi zCi }T of the tool i, being i a particular label for each tool in the scene,

will be estimated with respect to the camera frame {C}, obtaining p̃Ci = {x̃Ci ỹCi z̃Ci }T .

For addressing the 3D pose estimation task, the reviewed works in Chapter 1 have been con-

sidered. Since markerless approaches are preferred to keep the final framework as less marker

dependent as possible, the method of Tonet et al. [2007] using the pinhole camera model and

the approach of Zhou and Payandeh [2014] using 3D geometrical properties have been analysed.

Thus, despite the high accuracy reported in Shin et al. [2014], the work of using Haralick’s

algorithm has not been deeply studied.

4.3.1.1 Pinhole camera model

As it has been introduced in Section 4.1, the pinhole camera model (Fig. 4.12) is the most trivial

yet powerful method to project a 3D scene onto an image plane, where the modelled camera is

considered to be an ideal pinhole camera, i.e. without lens and all the problems that it implies,

e.g. distortion, blurring or finite field of view, among others.
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(a) Overall scenario. (b) Image plane section.

Figure 4.12: Pinhole camera model Forsman [2011].

The pinhole camera model relates the unknown 3D position of an object of interest pCi =

{xCi yCi zCi }T referenced at the camera frame {C} with its projection oIi = {uIi vIi } in the

image plane I. Such relation is decomposed in the XZ and the Y Z planes and mathematically

represented using the similar triangles theorem,

f

zCi
=
uIi − uCI
xCi

=
vIi − vCI
yCi

, (4.10)

where f and {uCI vCI } are the focal length and principal point of the camera C, respectively.

Such parameters are known as camera intrinsic, and are extracted from the calibration procedure

proposed in Section 4.1. Note that instead of considering a particular focal length for each axis,

i.e. fx and fy, the average f of those is considered in this algorithm.

The model described in Eq. 4.10 leads to and ill-posed problem, since the xCi and yCi coordinates

of the object can only be known up to a scale factor depending on zCi . Thus, additional

information must be introduced in the system to solve the ill-posed problem. Introducing the

diameter of the tool dtool seems to be a good option, since the cylindrical shape is homogeneous

along the tube and its size is non-dependant on the point of view.

In order to handle the projective relation of the diameter of the tool dtool and its projection onto

the image plane I, denoted as ∆Pi, the previously introduced pinhole camera model has to be

expanded. Such reformulation is possible considering that the points of the real tool defining

the boundaries of the tip have the same Z component, or in other words, that the segment

joining them is parallel to the image plane I.
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Once the diameter of the tool dtool is known and some constraints regarding the projection of

objects onto the image plane are relaxed, the following relation applies:

f

zCi
≈ ∆Pi

dtool
. (4.11)

Finally, zCi can be directly computed from Eq. 4.11, which allows to solve the initial ill-posed

problem setup by the pinhole camera model. Then, this method estimates the 3D position of

the tool pCi = {xCi yCi zCi }T according to

zCi ≈
f · dtool

∆Pi
, (4.12)

xCi = zCi

(
uIi − uCI

)
f

, (4.13)

yCi = zCi

(
vIi − vCI

)
f

. (4.14)

The reformulation of the pinhole camera model done to solve the initial ill-posed problem might

lead to some inaccuracies. Specifically, the accuracy of the estimated 3D position will decrease

from the centre of the image to its boundaries, as the distortion of the lens and the approximation

error increase.

4.3.1.2 Edge-crossing planes

The other considered approach for estimating the 3D position of each tool i is the method

introduced in Fig. 4.13, proposed in Zhou and Payandeh [2014]. The location of the tip Pi and

the orientation θi of the tool i with respect to the camera frame {C}, are estimated thanks to

the projection of the tool edges and tip onto the image plane, the camera intrinsic parameters

and the knowledge of the real width of the tool.

First of all, for each projected edge Ei,j of the tool i onto the image plane, being j = 1, 2, a

plane Ωi,j is defined to include the projected edge Ei,j and the vector CEi,j , which goes from

the camera frame {C} to the edge Ei,j . Then, the direction of the unitary vector uΩi,j , which

is perpendicular to the plane Ωi,j , can be defined as

−→u Ωi,j = −→u Ei,j ×
−→u CEi,j . (4.15)
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(a) Overall scenario. (b) Tool section.

Figure 4.13: Edge-crossing planes method applied on one tool Zhou and Payandeh
[2014].

The obtained vectors −→u Ωi,1 and −→u Ωi,2 point towards the centre of the real tool. Those vectors

can be used to compute the angle λi as follows:

tanλi =

∣∣∣−→u Ωi,1 +−→u Ωi,2

∣∣∣∣∣∣−→u Ωi,1 −
−→u Ωi,2

∣∣∣ . (4.16)

Leveraging the knowledge of the diameter of the tool dtool and the previously computed angle

λi, the length of the vector CN i can be obtained straightforward by applying the trigonometric

rule

|CNi| =
0.5 dtool
sinλi

, (4.17)

which allows to extract the orientation of the unitary vector uCNi as

−→u CNi = |CNi|
−→u Ωi,1 +−→u Ωi,2∣∣∣−→u Ωi,1 +−→u Ωi,2

∣∣∣ . (4.18)

Finally, the location of the tip Pi with respect to the camera frame {C} can be estimated by

defining the vector CP i as

CP i =
|CNi| −→u CTi−→u CTi

−→u CNi

, (4.19)
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and the orientation of the tool by determining the vector NP i as

NP i = −CN i + CP i. (4.20)

After the analysis of the method proposed in Zhou and Payandeh [2014], it is not considered

for the final framework; even if the general idea of the method makes sense from a geometrical

point of view, the paper does not explain some details that are necessary for implementing such

algorithm.

4.3.2 Data filtering

The outcome of any pose estimation algorithm might have outliers and noise. Thus, filtering

such data is indispensable to get a more realistic representation of the path followed by the

tools. The most well-known filters used for this purpose are the Kalman Filter (KF) Cuevas

et al. [2005] and its extensions for handling non-linear systems, such as the Extended Kalman

Filter (EKF) and the Unscented Kalman Filter (UKF). In all cases, the motion model of the

objects to track and the observation model of the system has to be determined.

In the current filtering problem, the state-transition model of the tools can be linearly repre-

sented as

pi,t = pi,t−1 + ∆T ṗi,t−1 +
∆T 2

2
p̈i,t−1, (4.21)

where pi,t is the 3D position of the tool i at time-step t, ∆T is the lapse time between consecutive

time-steps and pi,t−1, ṗi,t−1 and p̈i,t−1 represent the 3D position, velocity and acceleration of

tool i at time-step t− 1, respectively.

Regarding the observation model, it can also be linearly represented since the system directly

observes the position of the tools. However, since neither the kinematics nor the measurements

will be infinitely precise, their error can be assumed to follow a Gaussian distribution with zero

mean. Thus, under such assumptions and dealing with linear systems, the KF seems to be a

good approach for filtering the estimated 3D position p̃Ci,t = {x̃Ci,t ỹCi,t z̃Ci,t}T of any tool i in the

scene over time.
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The KF performs two stages at each time-step t. First, it predicts the state of the tools X̂i,t

using the previously introduced state-transition model, which can be directly rewritten as

X̂i,t = Ai,t Xi,t−1 +Wi,t, (4.22)

which can be expressed in terms of mean µ̂i,t and uncertainty P̂i,t as follows:

µ̂i,t = Ai,t µi,t−1, (4.23)

P̂i,t = Ai,t P,t−1 A
T
i,t +Qi,t, (4.24)

where Xi,t =
[
xi,t ẋi,t yi,t ẏi,t zi,t żi,t

]T
is the state vector of the tool i, Ai,t (Eq. 4.25) defines

the transition model, Wi,t (Eq. 4.26) models the acceleration term of the transition model as

Gaussian noise which is expressed in terms of uncertainty by Qi,t (Eq. 4.27). Note that Qi,t is

the covariance matrix of Wi,t, which assumes independence between the different Degrees Of

Freedom (DOF).

Ai,t =



1 ∆T 0 0 0 0

0 1 0 0 0 0

0 0 1 ∆T 0 0

0 0 0 1 0 0

0 0 0 0 1 ∆T

0 0 0 0 0 1


(4.25)

Wi,t = Ni,t (0, σw)

[
∆T 2

2
∆T

∆T 2

2
∆T

∆T 2

2
∆T

]T
(4.26)

Qi,t = σ2
w



∆T 4

4
∆T 3

2 0 0 0 0

∆T 3

2 ∆T 2 0 0 0 0

0 0 ∆T 4

4
∆T 3

2 0 0

0 0 ∆T 3

2 ∆T 2 0 0

0 0 0 0 ∆T 4

4
∆T 3

2

0 0 0 0 ∆T 3

2 ∆T 2


(4.27)

After the prediction stage, the KF updates the predicted state vector X̂i,t by comparing the

observed information Z̃i,t =
[
x̃Ci ỹCi z̃Ci

]T
with the expected observation Zi,t obtained with the

measurement model

Zi,t = Hi,t X̂i,t + Vi,t, (4.28)
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where Hi,t (Eq. 4.29) defines what should be measured according to the predicted position X̂i,t

and Vi,t (Eq. 4.30) models the Gaussian noise in the observation.

Hi,t =


1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 (4.29)

Vi,t = Ni,t (0, σv) [1 1 1]T (4.30)

According to the measurement model described in Eq. 4.28, the update of the predicted state

vector is twofold: firstly, the Kalman gain Ki,t is computed as

Ki,t = P̂i,t H
T
i,t

(
Hi,t P̂i,t H

T
i,t +Ri,t

)
, (4.31)

to, secondly, update the mean µi,t and uncertainty Pi,t of the state vector Xi,t as follows:

µi,t = µ̂i,t +Ki,t

(
Z̃i,t −Hi,t µ̂i,t

)
, (4.32)

Pi,t =
(
I −Ki,t Hi,t

)
P̂i,t, (4.33)

where Ri,t = σ2
v I3×3 is the covariance of Vi,t, in which independence between the different

measurements is assumed.

Once presented all the steps of the KF, it can be noticed that the mean µi,t and uncertainty Pi,t

of the state vector Xi,t has to be initialised at t = 0. Then, apart from the ∆T in the motion

model, only two parameters have to be tuned: σw and σv. The parametrisation given to these

variables will be discussed in Chapter 6.

4.4 Skill assessment

As it was stated in Section 1, the aim of this project is to be able to track the laparoscopic tools

in order to evaluate an operator’s skill level and to improve the training efficiency. In order to

do so, once the tool’s path has been filtered, it is necessary to analyse it.

Our initial aim was to collaborate with another group who would train new operators in the

basics of laparoscopic surgery. Videos were to be recorded in the beginning and in the end of the
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training of each subject and these videos would be used to train a classifier able to perform the

desired skill assessment. Due to unexpected problems, it was not possible to finish the training

of the new operators and therefore data relative to skilled and unskilled operators was not

available. As a consequence of this setback, this part of the project could not be implemented

nor validated with real instances. Nevertheless, we present a theoretical approach in which we

outline the features we would extract from the paths to determine the level of training of a

subject.

The problem of evaluating the skill level based on the tools’ paths can be seen as a classifi-

cation/regression problem. To apply machine learning techniques to this problem, first it is

necessary to be able to extract features from the filtered path to use as input to the classifier.

These features could be computed from the path as a whole or calculated using windows of pre-

defined length. Some possible features to be extracted from the path as well as the assumption

behind them are listed below. In these equations, x(t) and y(t) are the path coordinates at time

t, ti is the initial time and tf is the final time of the task.

• Mean absolute velocity: The mean velocity can be easily calculated from the path

points and it is expected to be a strong indicator of skill level, i.e. more skilled operators

tend to move the tools in a faster manner.

mean vel =
1

tf − ti

∫ tf

ti

√
ẋ(t)2 + ẏ(t)2dt (4.34)

• Mean absolute acceleration (jitter): More skilled operators will have steadier hands

and this will likely lead to smaller mean absolute acceleration values.

jitter =
1

tf − ti

∫ tf

ti

√
ẍ(t)2 + ÿ(t)2dt (4.35)

• Thinking time: More skilled operators will likely not spend large amounts of time

thinking about what to do next during a task. This thinking time can be estimated by

calculating the amount of time the tools’ absolute velocities were below a chosen threshold.

thinking time =

∫
|v(t)|≥T

dt, where |v(t)| =
√
ẋ(t)2 + ẏ(t)2 (4.36)

• Total task time: Newer operators will take longer to accomplish the same task as

compared to more experienced operators. This can be used to help in the skill assessment
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calculations.

duration = tf − ti (4.37)

• Path smoothness: The path described by the tools of a skilled operator is expected

to be smoother than the path from a inexperienced operator. In this particular case, we

adopt the smoothness definition presented in Moll et al. [2014],

smoothness =
n−1∑
i=2


2

(
π − arccos

(
a2i +b2i−c2i

2a2i b
2
i

))
ai + bi


2

, (4.38)

where ai = dist(si−2, si−1), bi = dist(si−1, si), ci = dist(si−2, si), si is the ith point of the

path, and dist(p, q) is the Euclidean distance between points p and q.

More features can still be proposed, and inspiration for such features can be drawn from path

planning theory Moll et al. [2014].

It is important to point out that the acquisition of the type of data needed to train such a

classifier is very hard and expensive to obtain. It is very likely that the eventual implementation

of such a classifier will use a small dataset for training, while it is trying to perform a complex

classification task. In this situation it is important to keep in mind the overfitting problem to

avoid creating models that are too complex and that describe the training data well but does

not generalise well to new data points.
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Framework design

Based on the techniques detailed in Chapter 4, we designed different instances of the framework

presented in Chapter 2. In this section, we present the characteristics of each framework, point

their issues out and discuss about possible improvements.

5.1 Framework 1

The outline of Framework 1 is presented in Fig. 5.1. Once the video sequence of the training

activity is acquired, the different frames are individually processed using the following steps:

1. Each frame is transformed using the camera intrinsic parameters which were determined

using the camera calibration algorithm.

2. The corrected image is then segmented using colour segmentation in the distance space

and motion segmentation. Note that using the two sources of information may enhance

the segmentation results.

3. A blob detection algorithm is used on the obtained binary mask to detect large connected

component which may represent the laparoscopic tools.

4. Information regarding the detected areas is passed to the KF so previous tracks can be

associated with the new observations.

31
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5. If KF corroborates that a blob has been observed previously, tip and tool detection algo-

rithms are applied for measuring the width of the tool which is lately used for estimating

the 3D pose.

In this framework, we do not consider classification algorithms since the unique data that was

available by that time was the one we took ourselves and the segmentation was not promising

enough.

Figure 5.1: Workflow of the framework 1.

Although the framework described above sounds convincing in terms of its capabilities to per-

form the task, several issues were observed when using it with real video sequences. The

problems were concentrated around one out of the four processes of the framework: detection.

The problems regarding the detection using motion and colour segmentation in the distance

space are detailed as follows:

• The concept of motion segmentation requires that the laparoscopic tools are constantly

on movement which might not always be the case. Hence, depending on the values for α

and T , the record of the tools inside the Gaussian mixture may disappear quickly and no

more observations of the tools are made.

• Due to the way the multiple hypothesis tracker is designed, the framework is not able to

solve the ambiguity when different objects are continually crossing. As a result, very noisy

observations are given at the end to the KF which cannot deal properly with them. Note
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that this issue can be handled by uniquely identifying the two tools. In this case, if one

of the tools is overlapping the other one, at least the measurement of one of them would

be correctly given to the following processes.

• Distortions coming from lighting conditions, such as glare and shadows, affect the estima-

tion of the Gaussian distributions representing the background.

Shadows: as stated in Stauffer and Grimson [1999], since the shadows are moving along

with the objects, they are usually classified as a region of interest as illustrated in

Fig. 5.2. Although combining the knowledge coming from the motion and colour

segmentation may refine the results, the problem related to the shadows remains in

the process since they also exhibit dark colours.

(a) Original image. (b) Segmented image.

Figure 5.2: Original image exhibiting shadows and its corresponding segmentation.

Glare: in our particular case, the illumination in the scene is given not only by external

light but also by some LEDs the camera has got. This means that the closer the

tool to the centre, the brighter the area will look in the image. The same effect is

seen when the tool approaches the camera. In this way, there should be more than

one Gaussian representing the same object since the intensity values vary all over the

tool. The result is, as expected, incomplete or irregular segmentation of the tools

(i.e. holes on the segmented area) as presented in Fig. 5.3.

• Motion segmentation will detect all the moving objects in the scene. Since we are consid-

ering a training environment in which the trainee needs to perform different tasks with the

laparoscopic tools, such as moving some other objects in the scene, several objects along
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(a) Original image. (b) Segmented image.

Figure 5.3: Original image exhibiting glare and its corresponding segmentation.

with the tools are going to be detected and, thus, refinement of the segmentation should

be carried out. In this case, we combined the knowledge of motion and the distance space

so that the segmentation was enhanced. However, other objects in the scene may look as

dark as the tool and, hence, false alarms appear in the process.

• The background subtraction method requires setting up the learning rate α and the min-

imum background portion T :

α: a high value means very noisy observations while a low value implies less credibility on

the current observation and, consequently, the Gaussian mixture relies on its records

which may be a problem when new objects enter the scene.

T: affects in a way the memory of the Gaussian mixture since the lower the value of

T , the less the number of Gaussian distributions representing the background. As

a result, the mixture will not be able to characterise several moving objects with

different colours. On the other hand, if the value of T is very high, the background

is modelled with a multi-modal distribution, but changes in motion are not properly

addressed since objects that stop at a certain time-step may be still detected in the

following frames.

5.2 Framework 2

As we have seen in the previous sections, an accurate estimation of the width of the tool

is required in order to reduce the error in XYZ estimation. However, we observed that the
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Figure 5.4: Workflow of the framework 2.

markerless segmentation approximations are affected by several environmental conditions and,

hence, the final result may not be as good as desired. Thus, we adopted the common approach

in the state-of-the-art: to put markers on the tools.

The outline of Framework 2 is presented in Fig. 5.4. Once the video sequence of the training

activity is acquired, the different frames are individually processed using the following steps:

1. Each frame is transformed using the camera intrinsic parameters which were determined

using the camera calibration algorithm.

2. The corrected image is then segmented using colour segmentation in the RGB space.

3. A blob detection algorithm is used on the obtained binary mask to detect large connected

component which may represent the laparoscopic tools.

4. Tool and tip detection algorithms are applied on the different blobs to measure the width

of the tools in the image plane.

5. Based on this information, the 3D pose of the object is estimated using the approaches

discussed in Chapter 4.

6. Information regarding the XYZ position of the tool is given to the KF so previous tracks

can be associated with the new observations.

The previous steps are repeated until all the frames in the provided video sequence are processed

so that a 3D trajectory is obtained. Finally, features are extracted from the path and compared

against data of skilled and unskilled persons to determine the level of skill of the subject.

The second proposed framework is able to cope with some of the issues encountered using the

initial approximation. However, it is not flawless. The problems regarding the marker-based

approach are detailed as follows:
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• When the laparoscopic tools are out of focus, the contrast between the tools and the

background decreases due to blurring effects. If the colour is preserved after blurring

there is no major issue. However, we observed that in fact the distortion slightly mixes

the colours of the tools and the background. The resulting colour may look quite similar

to the marker colour and, consequently, it may be incorrectly classified. For instance, we

observed this issue when an orange marker was out of focus on top of the red and yellow

or when a purple marker appeared blurred on top red and blue. Moreover, when the

illumination conditions are poor, the colours of the markers tend to look like colours of

the background and, thus, they are not detected by the framework. However, note that

this issue is not a direct consequence of the framework itself, but a result of the data

acquisition system and the complexity of the training environment (colourful pattern).

• As described by authors using marker-based approaches, the markers should be visible in

every moment in order to have good detection of the tools. However, note that, unlike

some of the approaches in the literature, our approach can cope with overlap between the

markers in the sense that we will obtain correct observations as long as the non-overlapping

areas are big enough to be detected and the visible part of the marker corresponds to the

one closer to the grasper. Also, this issue is mitigated by the properties of the KF for

dealing with missing observations at a certain time step.

• As we mentioned before, the method for pose estimation requires some assumptions and,

hence, we will be incurring in some inaccuracies. However, since the idea is to compare

the trajectories of different trainees under the same evaluation conditions, this distortion

could be considered negligible.

• The selection of the markers is essential as they should be distinguishable enough from the

other objects in the environment. This means that the decision for choosing the colour of

the markers is not universal and, hence, it should be adapted depending on the training

scenario.

• The segmentation is highly dependent on the training data and, hence, outliers may appear

in the process. Hence, additional pre-processing is required in order to use the data coming

from the pose estimation step in the KF.

• The fact that classification is used inside the segmentation process implies that the process

is more costly than before. Moreover, depending on the classification technique the overall

complexity can worsen dramatically. Since the framework is desired to be used for assessing
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trainers in real time this may suppose an inconvenient. In Chapter 6, we discuss about

two techniques we implemented for reducing the complexity of the overall process to the

same of the initial framework.



Chapter 6

Implementation

The proposed framework has been implemented in Matlab to cover from the reading of the

previously acquired video of the laparoscopic centre training to the storage and plotting of the

computed 3D position of the tools. At this point, it has to be recalled that the data comparison

part for assessing the skill of a subject has not been implemented due to the problems stated

in Chapter 3.

Since all the used methods have already been introduced in Chapter 4 and the general flow of

the framework has been explained in Chapter 5, the current section uniquely aims to give an

insight of the most crucial points of the implementation of the framework.

6.1 Camera calibration toolbox

Instead of implementing the Jean-Yves Bouguet model from scratch, the already built-in camera

calibration toolbox using such method in Matlab has been used. As schematised in Fig. 6.1,

the method consists in iteratively minimising the error between the theoretical non-distorted

projection of a known pattern and the real projection of such pattern onto the image plane.

Specifically, the camera calibration was carried out using a checkerboard, the squares of which

measured 21 mm of side. Apart from this information, the toolbox also requires some images

of the checkerboard gathered with the camera that has to be calibrated. Thus, a total of 19

images were initially considered; the higher the amount of data used to calibrate the camera,

the more accurate the estimation of the parameters would be.

38
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Figure 6.1: Camera calibration workflow MathWorks [2016b].

After obtaining the first estimation of the parameters, which had an accuracy of 2.63 pixels,

it was spotted out that 3 images were taken while the checkerboard was slightly bent. Thus,

the above procedure was repeated but removing those images, to finally obtain and accuracy of

0.92 pixels.

6.2 Deciding the colour of the markers

The colour of the markers is essential in the segmentation process and, thus, should be carefully

chosen. Evidently, the more the distant the colour of the markers to the components of the

background, the better and easier the segmentation. Having a close look at Fig. 2.2 and Fig. 6.2,

it can be seen that based on the colours of the scenario, orange or cyan should be considered.

Figure 6.2: RGB colour wheel Designs [2008].

6.3 Pixel classification

As we described in previous sections, illumination conditions are not the same in the training

scenario not only because of external lighting sources but also due to the light coming from the
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LEDs on the camera. Thus, the second framework incorporates machine learning techniques for

determining whether a pixel represents a marker or not. Then, the process consists in taking

each pixel of a given image and label it using a trained classifier.

The question that arises at this point is which classifier is preferred in our particular scenario.

For answering the question, we evaluated the supervised machine learning techniques provided

by Matlab according to previous experience with the techniques and some features presented

in Table 6.1.

Classifier
Multi-class

support

Prediction

speed
Memory usage

Decision trees Yes Fast Fast

Discriminant analysis Yes Fast
Small for linear and

large for quadratic

SVM No
Medium if linear;

slow otherwise
Medium

KNN Yes Medium Medium

Table 6.1: Comparison of different machine learning techniques for classification pur-
poses MathWorks [2016a].

The analysis is presented as follows:

• Decision trees: In terms of the features presented in the table, decision trees seem to

be an appealing technique for performing classification. However, it is important to know

that they tend to overfit the training data and that small perturbations on the input data

may lead to a different classification tree.

• Discriminant analysis: This technique is fast to predict the classification of the pixels

and assumes that the samples are drawn from a Gaussian distribution. However, this as-

sumption does not necessarily resemble the way the samples of the markers are distributed

in the RGB space.

• SVM: Unlike the other implementations, this classifier is not able to support multiple

classes. A possible workaround is to have one instance of the classifier trained for one

marker and another for the other one. However, as suggested in the table, the prediction

and memory usage is considerably slower than in the previous approaches.
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• KNN: This technique is maybe the simplest compared to the ones mentioned previously.

However, it should not be taken lightly since (i) the model is resilient to small perturba-

tions, (ii) the technique does not assume a specific distribution of the samples, and (iii) it

supports the classification of multiple classes with a single classifier.

The previous analysis suggests that the KNN classifier is a suitable option.

6.4 Tip detection

As it has been introduced in Section 4.2.2, a threefold method has been considered for detect-

ing the tip of the tool. Since only the general flow of such approach has been explained, its

parametrisation and further details about the implementation are given as follows:

• For detecting the borders of the tool, two approaches were initially considered: the Hough

transform and an ad hoc algorithm. After comparing both methods on several hundreds

of frames, the former was discarded; even though parametrising the Hough transform

for merging collinear segments and discarding the remaining small lines, better results

were achieved with the ad hoc approach. However, it must be said that its performance

is completely dependent on the segmentation, even though not as much as the Hough

transform.

• Considering the ad hoc approach implies placing the grid accordingly to the orientation of

the tool in the scene. For this purpose, the framework allows to manually set the number

of lines in each direction; note that the implementation allows to set a complete grid up,

i.e. with horizontal and vertical lines, which leads to a slightly less accurate placement of

the lines but working in all cases, indifferently from the orientation of the tools.

• Two algorithms were initially considered for fitting a line on a cloud of points: LMS

and RANSAC. During the trials, it was spotted out that RANSAC was only performing

better than LMS on those few cases where extreme outliers were obtained by the ad hoc

approach due to holes or leakages in the computed binary mask. Taking into account this

reasoning, keeping a low computational time with the LMS at the cost of having a less

accurate estimation of the lines was preferred.
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• Once the middle line is computed, an exhaustive search along it is required to find the

position of the tip. For this purpose, the framework requires to set a parameter regarding

the position of the camera; during the trials, it was noticed that a top view of the scene

implies a specific direction of search, while a side view needs the opposite direction of

search. Thus, this parametrisation was kept user-friendly.

6.5 Kalman filter parametrisation

The general formulation of the Kalman filter has been introduced and extended to our specific

problem in Section 4.3.2. Thus, only the parametrisation of the proposed models is missing

for giving the full details of the implementation of such filter. In short, those parameters are

the noise in the motion and measurement models, and were respectively set to σw = 0.30 and

σv = 0.45. The characterisation of those parameters was done empirically.

Apart from those parameters, the state vector and covariance have to be initialised to start

the iterative data filtering. Thus, it was considered appropriate to set the initial position of

the tool at the centre of the scenario with zero velocity and an uncertainty covering half of the

scenario. In that way, a fast convergence from the initial state to the state vectors proposed by

the models is granted. Moreover, the time step between frames was fixed to be of 40ms, i.e. the

inverse of the FPS rate.

After all this parametrisation, the filtered data was not noisy but it presented some disconti-

nuities. This was the result of having extreme outliers on the 3D estimation of the tool or, in

other words, that the assumption of the noise in the measurement model is Gaussian might not

be valid. In order to overcome this problem, the 3D data was bounded within the boundaries

of the laparoscopic training centre. With this last step, the appearance of the filtered data was

satisfactory.

6.6 Speeding up the framework

As we detailed in the previous section, the classification of each pixel using the learning based

techniques can be an expensive task. Thus, we explored two approaches for speeding up the

segmentation process: multi-scale segmentation and RGB classification pre-computation. The

two techniques are described in the following sections.
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6.6.1 Multi-scale segmentation

Multi-scale segmentation addresses the segmentation from two perspectives: location and re-

finement. Initially, the image is shrunk to a specific proportion of the initial dimensions. At

this scale, we perform a rough classification so that the location of areas of interest in which

the markers is found, as presented in Fig. 6.3a. This knowledge of location can be used for

reducing the search space and, hence, the computation itself. Then, since the transformation

to the shrunk image is known beforehand, the correspondence between the area in that image

and the one in the original-size image can be obtained. Finally, the classification is performed

once again in these areas obtaining a refined segmentation, as presented in Fig. 6.3b. Note that

small or sparse regions may be discarded before carrying out the last step.

(a) Rough segmentation (b) Refined segmentation

Figure 6.3: Results at two different scales using the multi-scale segmentation approxi-
mation.

6.6.2 RGB classification pre-computation

As we explained before, the RGB colour of each pixel is used for determining whether the pixel

belongs to a marker or not. Since this operation is performed for every single pixel in the

image and the image contains around 2, 073, 600 pixels, the classification becomes considerably

expensive (e.g. if the learning technique is a KNN method and its implementation uses a K-D

tree, the segmentation complexity is of the order of O(n log(m)), being n is the number of pixels

in the image and m the number of samples in the classifier). However, the classification is not

being dynamically updated while processing the different frames and, hence, one could think of

pre-calculating the values for each possible combination of RGB vectors and storing them in a

lookup table. Therefore, the complexity of the process is reduced to m accesses to positions in

memory which cost is assumed to be O(1), i.e. an overall complexity of O(n). That means that

the computation required by the first framework and the second is approximately the same.
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Results and evaluation

The proposed framework has been tested to determine the validity of its results and to show

its flaws. For this purpose, experiments with real data have been carried out in Section 7.1 to

evaluate the implemented part of the framework, i.e. camera calibration, tool detection and

tool pose estimation. Then, the theoretical proposal for skill assessment has been tested in

Section 7.2 by simulating some data.

7.1 Implemented part of the framework

In order to analyse the data obtained with the implemented part of the framework, not only

its final results were considered but also the outcome of its different components. The par-

tial, general results and experiments regarding the repeatability of the process are presented

and discussed in Section 7.1.1 and Section 7.1.2, and Section 7.1.3, respectively. Finally, the

computational cost of the framework is analysed in Section 7.1.4.

Apart from the results reported in this section and due to the nature of the work, supplementary

videos are provided along with this document.

7.1.1 Single component evaluation

The aim of this section is to analyse the behaviour of the key parts of the implemented frame-

work, i.e. camera calibration, tool detection and tool pose estimation. However, due to the

44
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impossibility of determining accurately the camera extrinsic parameters, the evaluation of the

tool pose estimation part is done in Section 7.1.2.

As stated in Section 2, a more realistic representation of the scene was required to locate the

tools in the image. This was successfully achieved using the camera calibration procedure. This

is observed in Fig. 7.1 in which from a different point of views curved lines are transformed into

straight ones. Note that removing the distortion of the camera leads to a slight reduction of

information of the scene, which might be taken into account when setting the scene up.

(a) (b)

(c) (d)

Figure 7.1: Benefits of camera calibration. (a) and (c) are two input frames, (b) and
(d) are their corrected version, respectively.

The tool detection is mainly composed of two parts: segmentation and tip detection. Due to

the importance of both parts in the detection of the tool, they have been analysed in Tab. 7.1

for different scene conditions, i.e. point of view, lighting conditions and number of tools. These

results depict how the framework might manage real-life scenarios.

Scene 1 and 2 in Tab. 7.1 show the obtained results when only having one laparoscopic tool in

the scenario, but with different points of view and lighting conditions. In both cases, the binary

masks properly represent the area of the marker and, thus, the location of the tip as well as the

corresponding width measurement are precisely computed.

The other scenarios in Tab. 7.1 deal with two laparoscopic tools in the laparoscopic training

centre. Scene 3 also reports a good tip localisation and characterisation, even though there are

some outliers in the segmentation; because of either its size or its shape they are not considered
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Table 7.1: Binary mask and tool detection obtained from scenes with different points
of view, lighting conditions and number of tools.

as ROIs. Finally, scene 4 and 5 report some flaws of the framework during both the segmentation

and location of the tip. Regarding the segmentation, it is really sensitive at the manufacture of

the makers; faded regions and the crease on one of the markers make the segmentation fail.

From the previously observations it can be stated that small errors in the segmentation already

affect the location of the tip, specifically the placement of the lines on the borders of the tool.

Despite these issues, the obtained results are still acceptable and may be properly handled by

the Kalman filter.
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7.1.2 General evaluation

Once the different components have been evaluated separately, the next step is to assess the

general output of the framework. To do so, we designed two different scenarios in which the

idea consisted in following a specific pattern with the tools so we could check the estimated

trajectory. The results of the two trials are described in the following sections.

7.1.2.1 Trial 1

The first trial contemplated the configuration illustrated in Fig. 7.2. In this case, a single tool

was displaced along the metallic m-shaped tube on the upper part of the image.

Figure 7.2: Training environment in trial 1.

Having in mind that (i) the x-axis increases from left to right and zero is located right in the

middle of the image plane, (ii) the y-axis increases from top to bottom and, as in the previous

case, zero corresponds to the middle point of the image plane along this axis, and (iii) the z-axis

decreases when the tool approaches the camera being zero at the camera itself; the expectations

on XYZ for this particular test are detailed as follows:

• The values for X should go from a negative value to a positive value during all the exper-

iment

• The variation in terms of Y should be small since the tool does not move in this direction.

However, note that the white scenario is slightly rotated with respect to the big scenario

and, thus, we should expect errors coming from this situation.

• The values of Z should reach their highest values at the beginning and ending parts of the

trajectory and the smallest ones when the tool is exactly on top of one of the peaks of the

shape
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The resulting trajectory in each of the axes throughout the time is presented in Fig. 7.3. It can

be observed that X and Y agree with the described expectations, but considerable variations

in Z are observed. In this case, we expected the three peaks to be aligned, but they are seen

at different distances to the camera. The same behaviour is noted for the starting and ending

points. This issue could be a consequence of the orientation of the camera in the training centre.

We noticed that the camera could be tilted and, hence, one of the sides of the scenario may

appear closer than the other and due to the approximations done in the 3D pose estimation

step, small variations in the measurements in the image plane lead to large variations in the

estimation of the pose in the real world.

One workaround to this problem would be to transform the computed trajectory to a corrected

one by including prior information of the test (as the expectations we mentioned). Nevertheless,

if all the trajectories are computed with the camera having the same orientation, there should

be no major issue when assessing the subjects since they all will present the same “distortion”.

Moreover, none of the features is affected by this kind of transformation.
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Figure 7.3: Estimated XYZ position of the tool along the video sequence for trial 1.

The resulting 3D path is displayed in Fig. 7.4. It can be observed that although it presented the

issues regarding Z, the expected m-shaped figure is traced. It is also important to note that the
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movement of the tool itself did not perfectly match the shape of the wire since it was operated

by unskilled subjects.
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Figure 7.4: Computed 3D path for the m-shaped figure.

7.1.2.2 Trial 2

For the second trial, our idea consisted in evaluating the framework using the colourful scenario

while (i) drawing a rectangular-like form with two tools, as depicted in Fig. 7.5, and (ii) once

that shape is completed, the two tools are moved to the centre of the training scenario and,

after, approach the camera. For this experiment, the tools were separated a certain distance

which was more or less kept along the trajectory. Note that since one of the tools is violating

the discussed approach for selecting the marker colour, its trajectory is expected to be affected

by false alarms.

Figure 7.5: Training environment in trial 2. In this experiment, the subject was asked
to perform a rectangular-like form as described by the dashed white lines.
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The expectations for XYZ along the second trial are detailed as follows:

• For the rectangular-like form, the tools should go through four behaviours:

On the first side (i.e. the upper part), the values for X are expected to go from negative

to positive, while Y is kept constant

On the second side (i.e. the rightmost part), the values for X should be constant, while

Y increases

On the third side (i.e. the lower part), the values for X should go from positive to

negative, while Y is constant

On the fourth side (i.e. the leftmost part), the values for X should be constant, while

Y goes from positive to negative values

No large variations should be observed in the z-axis while describing the rectangle since

the movement is not drastic in this direction.

• Since in the second part the tool gets closer and closer to the camera, Z is expected to

decrease, while X and Y are kept mostly constant.

The results along the three axes as the frames are processed are shown in Fig. 7.6. It can be

observed that the orange tool agrees with the expectations on the experiment, while the purple

marker exhibits some issues in the estimation of Z. As we mentioned before, the purple marker

does not comply with the rules for selecting the markers and, hence, when it is displaced on

top the red and blue triangles, the segmentation starts to fail. Also, note that the situation

is aggravated by the fact that the middle area of the scenario displays a purple-like colour.

Nonetheless, the two tools are observed to move together along the x-axis and y-axis which

satisfies the expectations of the trial.

The 3D path described in this second trial is presented from a top view in Fig. 7.8 and side

view in Fig. 7.7. It can be seen that from a top view the trajectories are similar to a rectangular

shape. What is definitely not correct about the trajectories is that the purple tool describes

a form which holds the trajectory of the orange marker inside since former is always located

to the right of the latter. Also, note that although the two markers are not expected to trace

exactly the same form, the difference should not be that high, for instance, in the Z axis in

which there is no much movement.
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Figure 7.6: Estimated XYZ position of the two tools for trial 2 as the frames were read.
Note that the orange and purple lines correspond to the trajectory of the marker with
the same colour.
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Figure 7.7: Side view of the path described in trial 2.
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Figure 7.8: Top view of the path described in trial 2.

7.1.3 Quantitative evaluation

Performing a quantitative evaluation of the accuracy of the obtained measurements is difficult

due to (i) inherent error induced by humans and (ii) the absence of the camera extrinsic param-

eters. Moreover, since the aim of this framework is to assess the skill of a subject in comparison

with some previously stored information, determining the repeatability of the obtained data in

different trials of the same movement is of interest.

For this purpose, the yellow guideline shown in Fig. 7.9 was installed in the training centre,

allowing the laparoscopic tool to move along the guideline while minimising, although not com-

pletely discarding, the human error. Specifically, a movement consisted in sliding the tool along

the guideline, from the nearest to the farthest part of the guideline, and back to the initial po-

sition. A total of five movements per point of view were performed to evaluate the repeatability

of the obtained data. Note that each point of view will be individually analysed.

Figure 7.9: Guideline setup for reducing the human error.
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For each point of view, the outcome of the previous experiments was five clouds of points, i.e.

five paths in the 3D space, which have different numbers of samples. Thus, in order to compare

those paths, some post processing was carried out; the 3D line equation was extracted from each

cloud of points to determine how good it was at fitting the other clouds of points. The notion

of fitness was determined by the average distance in millimetres of each point of the evaluated

cloud to the nearest point of the line model.

The obtained 25 fitting coefficients for each point of view were initially placed in a couple of

5× 5 tables. In order to provide this information in an understandable way, the fitness of each

model on the other points of clouds was represented with boxplots. Note that the mean of all

this data, which represents the average dissimilarity in millimetres between trials, was plotted

in green. Those plots for top and side view are shown in Fig. 7.10.
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(a) Top view
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(b) Side view

Figure 7.10: Average dissimilarity between trials of the same task.
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The average dissimilarity with a top and side view of the scene is of approximately 7 and 12mm,

respectively. This discrepancy between trials is due to (a) inaccuracies in the segmentation, (b)

inaccuracies in the measurement of the width of the tool and (c) the remaining human error

in the experiments. A side view of the scenario tends to be more challenging because of the

perspective visualisation of the tools, which not only implies a conical shape but also a wider

set of colours for representing the marker.

7.1.4 Performance analysis

As the aforementioned final goal of the framework suggests, the overall process is expected to

be carried out in real time. If that feature is achieved, the subjects could be instantaneously

evaluated while they perform the training experiments and, thus, the mistakes in which the

subject is incurring can be corrected in site. In this sort of ideas, we carried out a performance

analysis by averaging the processing time throughout several video sequences. We found that

processing a frame takes around 460ms and the contribution of each step is depicted in the pie

chart in Fig. 7.11. Two high contributors to the processing rate are pointed out by this plot:

• Edge detection presents the highest contribution with a 45%. One workaround to this

issue could be to avoid using edge detection for obtaining the boundary of the marker and

considering only the outer points intersecting the grid placed in the tip localisation step.

• Reading from and storing in hard disk contributes in the 38%. This situation is

expected since data transference between RAM and hard disk is computationally costly.

Frame reading: 8%

Distortion 
correction: 9%

Rough 
segmentation: 5%

Refined 
segmentation: 2%

Edge detection + morphology: 45%

Tip detection: <1%

Pose estimation: <1%
KF: <1%

Results 
storage: 30%

Figure 7.11: Contribution of the different parts of the framework to the overall pro-
cessing time.
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The performance analysis above has been carried out on an Intel Core i7 CPU (2.5 GHz) under

OS X El Capitan with 16 GB of RAM. Note that the implementation in Matlab might use

more than one core in some parts of the framework.

7.2 Theoretical part of the framework

Due to the problems described in Section 4.3, i.e. the lack of test data, the skill assessment

classifier could not be implemented. Being that this was the motivation of the tracking the

laparoscopic tools, simulations were done as a proof of concept of the extraction of features from

the filtered path. Without loss of generality, the test paths were created in two dimensions.
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Figure 7.12: Simulated paths and some of the extracted features. (a) Simulated paths
with different amounts of noise, (b) coordinates and velocity over time for each path,
(c) velocity and acceleration over time for each path, (d) thinking time extracted from
velocity magnitude.
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The simulated path consisted of the tool following the four sides of a square and taking a pause

at each corner. Noise was then added to this path to simulate different levels of expertise of the

operator. Three levels of noise were added: no noise, small noise, and large noise. Each trial is

represented by a different colour in Fig. 7.12:

• Large noise (beginner subject): Red

• Small noise (trained subject): Green

• No noise (expert subject): Blue

For these simulated cases, the total duration of the activity and the thinking time were fixed for

all three paths, and therefore we should expect equal values for these extracted features. The

simulated paths served mainly the purpose of example paths for feature extraction and should

not be seen as accurate representations of skilled or unskilled operators but as a simplification

of what we expect to see.

From the (x(t), y(t)) coordinates at each time-step we calculated five features for each path:

mean velocity, jitter, thinking time, duration, and smoothness. The results obtained for each

feature of each path can be seen in Table 7.2. The equations that were used to calculate the

features in Table 7.2 have been described in Section 4.4.

Feature Beginner subject Trained subject Expert subject

Mean velocity 3.4504 2.9867 2.8169

Jitter 2.4107 0.9854 0.4286

Thinking time 0.4366 0.4366 0.4366

Duration 72.0000 72.0000 72.0000

Smoothness 0.0246 0.0035 0.0000

Table 7.2: Extracted features from the simulated trajectories. Fixing the thinking time
and the duration of the simulated data, the effect of the mean velocity, the jitter and
the smoothness can be analysed.

In these simulated results we can see that the task duration and thinking time do not change

between paths, as was expected since the difference between these paths is the amount of added

noise. It can be observed that noisier paths lead to larger calculated values of jitter, smoothness

and mean velocity. Also, it can be seen in Fig. 7.12a and Fig. 7.12c that while small amounts
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of noise are barely noticeable by observing the paths themselves, but they become clear when

analysing the velocity and the acceleration at each time-step.

These results indicate that these features are a good simple set of features that can be quickly

calculated from the filtered path and these numbers can be used by the chosen classification

algorithm to assess the skill level of operators that have their activities recorded.



Chapter 8

Final remarks

In this project, we propose a framework for tracking MIS tools on laparoscopy training envi-

ronments and assessing the level of skill of subjects based on the executed paths.

From a general view, the framework consists of four main parts. Given a video sequence, (i) the

frames are corrected to discard distortions coming from the acquisition system, (ii) the tools

are segmented using colour segmentation, the width of the same is measured, (iii) based on

this information the corresponding pose in the real world of the tools is estimated and, finally,

(iv) once all the frames are processed, features are extracted and compared to data from skilled

and unskilled operators. Due to the unavailability of data suiting the requirements of the final

framework, the final part was addressed theoretically.

The implemented part of the framework was evaluated from three different aspects. Initially,

the assessment considered each component separately so that weaknesses, as well as strengths of

them, could be highlighted. At this scale, we observed that the segmentation results are highly

dependent on the discriminating power of the features used for differentiating the tools from

the background. In the case that colour is the considered feature, we noted that maximising

the distance from the colours in the scenario and the marker is a good option. Secondly, the

components of the framework were evaluated altogether in two different scenarios in which the

subject was asked to trace specific patterns using one or two tools. With these two experiments,

we corroborated that the traced figures and the estimated trajectories looked alike. Nevertheless,

we were also able to spot that the pose estimation method is highly sensitive to the orientation of

the camera and, hence, an additional transformation of the resulting trajectory may be required.

Finally, the third test aimed to determine whether the approach was able to produce similar

58
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results given similar inputs. The outcome regarding this evaluation element suggested that if

an experiment is carried out several times, the framework is able to describe similar paths with

an average error of 12mm.

For checking the theoretical part of the framework, i.e. the classification of the trainee based on

features extracted from the executed path, synthetic data was generated. The obtained results

suggest that the considered features may be able to discriminate unskilled from skilled subjects.

However, additional testing on real data is required.

Due to the way the framework is implemented, it can be extended to support additional func-

tionalities and, also, scaled to bigger applications without requiring considerable changes.

As future work, the authors would like to acknowledge that the framework should take advantage

of the prior knowledge of the geometry of the tool. Hence, using a Computer-Aided Design

(CAD) of the tool and shape-matching techniques may be useful for overcoming some of the

detailed problems with the current framework. Also, since shape-based matching may require

performing registration operations, the knowledge coming from the current approach could be

used for initialising the matching algorithm and, hence, for decreasing the overall computational

time.
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