
1

Camera Calibration from Multi-Object Triangulation
and Tracking using Second-Order Moment Statistics
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Abstract—Triangulating objects from two cameras has been
widely addressed in computer vision. Classical approaches con-
sider establishing the relation between the view of the two
cameras from static setups, e.g. patterns placed in the Field of
View (FoV) of the sensing system. Nowadays, the same task can
be achieved dynamically by triangulating and tracking moving
objects while calibrating the cameras at the same time. For
instance, the multi-object estimation could be conditioned on
the states of the cameras which are given by a parent process
optimising them. This process can be feedback with the variance
in the number of objects in the scene as a measure of confidence
in the estimation of the camera parameters. In this paper, we
present an approach for integrating the calculation of variance in
a unified framework for camera calibration from multiple object
triangulation and tracking. The proposed integration is evaluated
in simulated and real environments.

Index Terms—Camera calibration, disparity space, multi-
object tracking, PHD filter, higher-order statistics.

I. INTRODUCTION

Estimating the 3D position of an object of interest using
two cameras is a well-known problem in the community of
computer vision [1], [2], [3], [4], [5]. Note that for addressing
this problem, knowledge of the geometry of the scene, as well
as specific characteristics of the set of cameras (i.e. intrinsic
and extrinsic parameters), is required in advance.

Given a pair of cameras, the initial step consists in de-
termining the projective geometry between the two different
views. This task is classically performed by finding the relation
between the real world and two image planes in two steps.
First, a pattern with some key-points is placed in the FoV
of the two cameras. The real position of these key points in
the real world is estimated beforehand. Second, the epipolar
geometry is computed through calibration methods, such as
the seven points [6], eight points [7], rank-2 constraint [8],
among others. Note that the selection of the calibration method
depends largely on the requirements of the specific case of
study. For instance, the literature recognises that linear meth-
ods are useful in ideal environments in which no noise and
no outliers are presented, while the so-called robust methods
outperform in presence of both issues [9]. Third, the images
are rectified [10], so that a similar setup to the one depicted
in Fig. 1 is obtained. In this sense, finding the correspondence
between a point in the image plane to another in the other
one is reduced to a search on the corresponding epipolar line.
Hereupon, the 3D pose estimation of objects is achieved by
taking into account the information of the two cameras.

Fig. 1. Rectified and non-rectified views from two cameras [11]. In (1) the
tree is projected onto two non-rectified cameras, while (2) depicts a rectified
setup in which a point in the left image plane corresponds to an epipolar line
in the other.

Nowadays, triangulation of an object from two cameras can
be carried out dynamically, for example, by detecting and
tracking paper planes thrown to the FoV of the sensing system
as presented in [12]. In that work, the authors established
a Bayesian framework for estimating and tracking the 3D
position of the targets while calibrating the pair of cameras
at the same time. Since the computation of the Bayesian
filter is expensive, an approximation of this scheme through
the propagation of the first-order moment of a multi-object
distribution, also referred as Probability Hypothesis Density
(PHD) [13], [14], is considered. As demonstrated by exper-
iments on simulated and real data, the proposal was able to
provide coherent results for the three tasks it unifies.

It has been shown recently that regional statistics, such as
expectation and variance in the number of targets, can be
calculated within multi-object filtering process [15]. Note that
having a sense of variance in the number of targets might be
useful for taking strategic decisions. For instance, this measure
could be used for determining how reliable the information
collected by the different sensors in the scene is.

The aim of this work is to introduce the concept of vari-
ance in the number of targets into the multi-object triangu-
lation, tracking and camera calibration framework proposed
by Houssineau et al [12]. The paper is organised as follows.
In Section II, brief details of the considered framework are
described. Then, in Section III, we discuss how the con-
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cept of variance in the number of targets is plugged into
the framework. To understand better where the variance is
computed, the pseudo-code of the data update on the PHD
filter is delineated in Section IV. The modified framework is
tested on simulated and real data, and the obtained results
are discussed in Section V. Finally, remarks about the overall
project and proposed future work are presented in Section VI.

II. AN OVERVIEW ON THE MULTI-OBJECT
TRIANGULATION, TRACKING AND CAMERA CALIBRATION

FRAMEWORK

The multi-object triangulation, tracking and camera calibra-
tion framework proposed by Houssineau et al. [12] combines
the use of disparity space for modelling the uncertainty and
a hierarchical structure of parent and daughter processes. The
former uses a particle filter to estimate the parameters of one
camera, since the other one is assumed to be the reference
system. The latter estimates the state of the objects in the scene
conditioned on the camera states provided by each particle in
the parent process.

A general overview of the framework is presented in the
following sections.

A. Representing uncertainty in the disparity space

The framework proposed in [12] is lined up with the
Bayesian filtering formulation and, thus, quantification of
uncertainty is required. Depending on the probability dis-
tribution exhibited on the uncertainty, different approaches
could be considered. For instance, if the uncertainty follows a
Gaussian distribution, the Kalman filter (KF) [16] is desired
due to its simplicity; but as the system tends to be non-linear,
approaches such as the Extended Kalman Filter (EKF) [17]
or the Unscented Kalman filter (UKF) [18] are considered
instead.

The uncertainty is commonly assumed to follow a Gaussian
distribution due to the simple and yet reasonable model rep-
resentation. However, as stated by the authors of the paper, a
Gaussian representation is not a suitable choice in this context
since the farther the object from the camera, the higher the
uncertainty [19] as presented in Fig. 2. Clearly, a Gaussian
distribution does not explain this behaviour accurately. Also,
direct estimation of the 3D pose of an object in the Euclidean
space is usually subjected to non-linear perspective projection
and, hence, linearity is difficult to maintain in the process.
The solution is to consider a disparity space since (i) the
resulting projections from this space onto the two image planes
is achieved by linear transformation, (ii) the noise on the
estimations depends on the distance from the camera, and
(iii) the range is actually limited by the dimensions of the
image. Note that the importance of the first fact is that if the
uncertainty on the state of the object of interest is represented
through a Gaussian in the disparity space, the relation is kept
after transforming the state back into the Euclidean space.

Under this perspective, the state of an object could be
modelled by a Gaussian distribution pt ∼ N (yt, Qt) with
mean yt and covariance Qt at time-step t in the disparity space
D. Then, the dynamics of an object of interest are described

Fig. 2. Uncertainty quantification on triangulation from cameras with different
setups. The farther the object to the camera, the higher the uncertainty [19].

through the prediction and the update steps as follows. Initially,
a particle is sampled from pt. Then, the representation of this
particle is mapped into the Euclidean space X. Afterwards, the
particle is moved in this space using the Markov transition
Mt+1|t. From this point, the particle is mapped back into
the disparity space. After, the obtained particle is used for
predicting the Gaussian distribution pt+1|t. Finally, the particle
pt+1 in the next time-step t + 1 is obtained by applying the
Kalman update to pt+1|t.

B. Single-object estimation using non-rectified cameras

The framework presented by Houssineau et al.[12] is able
to cope with object estimation using a non-rectified camera
setup by creating artificial rectified pairs for each camera as
illustrated in Fig. 3. As a result, two disparity spaces Dl and
Dr are created for the left and right setup, respectively. Ac-
cordingly, the previously discussed prediction step for single-
object estimation needs to be extended to handle the cases in
which the observations come from one camera or the other.
In the simplest case, the prediction is performed in the same
camera in which the observations have been made and, hence,
a usual prediction is considered. However, when the prediction
is performed based on the observations of the other camera,
the situation is different since the relation between the two
disparity spaces should be taken into account. A procedure
called particle move is applied, which consists in predicting
in the disparity space related to the observations and then
projecting this information into the other disparity space.

C. A general solution for multi-object filtering

The multi-object filtering problem consists in tracking a set
of targets given that (i) the cardinality of the set is unknown
and expected to vary in time since the objects of interest may
disappear from the FoV or enter the scene at a certain time-step
and (ii) the measurements coming from different sensors have
some detection uncertainty and may represent false alarms.
Thus, one of the main issues is to find the correspondence
between the measurements and the targets so that the update
step is performed correctly [20].
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Fig. 3. Non-rectified two-cameras setup (Cl, Cr) with their corresponding
abstract rectified camera pair C∗

l and C∗
r , respectively [12].

A well-known methodology for describing the multi-
object filtering problem is called the Finite Set Statistics
(FISST) [21]. Let X and Z be the target space and the obser-
vation space, respectively. The FISST framework encompasses
the following models:

1) the multi-target state and the multi-target observation
at a time-step t are defined as Xt ∈ F(X ) and Zi

t ∈
F(Z), being F(X ) and F(Z) the σ-algebra on X and
Z , respectively;

2) at a given time-step t, each xt ∈ Xt represented by the
state y′ ∈ D̂i continues existing with probability pS(y′)
or dies with a probability 1− pS(y′);

3) given that the object xt ∈ Xt represented by the state
y′ ∈ D̂j survives at time-step t+ 1, the transition from
xt to xt+1 with state y ∈ D̂i is given by the multi-target
transition density Mi

t+1|
j
t (y|y′);

4) the multi-target state Xt at time-step t may contain a
new set of objects µb

t(y) appearing spontaneously;
5) an object xt ∈ Xt with state y′ ∈ D̂i is detected

with probability piD(y′) or missed with probability
1− piD(y′);

6) the probability that the observation zt comes from the
object xt ∈ Xt with state y′ ∈ D̂i is given by the multi-
target likelihood Li

t(zt|y′);
7) the observations Zi

t at a certain time-step t are inde-
pendent and may contain a set of false alarms spatially
distributed by a probability distribution c whose cardi-
nality follows a Poisson distribution with parameter λi.

Taking into account the previous information and accord-
ingly to [20], [21], the estimation of the population is carried
out by the prediction and update steps as follows:

P̂ i
t (Y ) =

∫
Mi

t|
j
t−1(Y |Y ′)P

j
t−1(Y

′)δY ′, (1)

P i
t (Y ) =

Li
t(Zt|Y )P̂ i

t (Y )∫
Li
t(Zt|Y ′)P̂ i

t (Y
′)δY ′

. (2)

It is important to remark that the multi-target likelihood in
Eq. 2 depends on the physics of the sensors. For instance, the
multi-target likelihood Lt(·|·) may assume spurious observa-
tions whose cardinality follows a Poisson distribution.

The standard Bayes filter was initially considered for ad-
dressing this problem, but approximations are preferred instead

due to the intractability of the scenario when dealing with
several targets [20], [21].

D. A particular derivation from the FISST framework: the
PHD filter

As we described previously, the Bayes filter computation
increases exponentially as the number of targets grows. Thus,
approximations of the multi-object distribution are adopted in
order to ease the estimation process. These approximations
are derived from the FISST framework through the first-
order statistical moment of the posterior multi-target state, also
known as intensity or PHD. One of the best-known derivations
corresponds to the PHD filter [13], [14], [21].

For a Random Finite Set (RFS) Xt on the target space X
with a probability distribution P, the integral of the intensity
ν on a region B ⊆ X , i.e.∫

|Xt ∩B|P(dXt) =

∫
B

v(xt)dxt, (3)

corresponds to the expected number of targets in that re-
gion [14]. Note that when B = X , the value of the integral is
equal to the total mass Ñt, i.e. the expected number of targets
in the whole target space.

The RFS Xt is assumed to follow a Poisson distribution [14]
in the particular case of the PHD filter and, hence, the
following two conditions hold:

1) each element xt ∈ Xt is independent from each other;
2) the elements in Xt are identically and independently

distributed (i.i.d.) with probability distribution v(·)/Ñt.
Then, the multi-object densities P̂ i

t and P i
t are propagated

through their first moment densities µ̂i
t and µi

t as follows:

µ̂i
t(y) = µb

t(y) +

∫
pS(y

′)M i
t |

j
t−1(y|y′)µi

t(y
′)dy′, (4)

µi
t(y) = (1− piD(y))µ̂i

t(y)

+
∑
z∈Zi

t

piD(y)Li
t(z|y)µ̂i

t(y)

λici(z) +
∫
piD(y′)Li

t(z|y′)µ̂i
t(y
′)dy′

. (5)

In the particular approach presented by Houssineau et
al. [12], the multi-object transition density M i

t |
j
t−1(·|·) cor-

responds to the particle move between the disparity space D̂i

and D̂j from the time-step t− 1 to t.
There are two implementations of the PHD filter: the Gaus-

sian Mixture PHD filter [14] (GM-PHD) and the sequential
Monte Carlo PHD filter [22] (SMC-PHD). Having in mind
that we are using the disparity space representation presented
in Section II-A and the single-object estimation approach
described in Section II-B, the GM-PHD becomes a suitable
solution since the Kalman filter is used for the single-object
filtering and the uncertainty is represented as a Gaussian.

For using GM-PHD, the pS and pD are assumed to be
state-independent [14]. However, constraining pD in such way
requires the use of at least three cameras [12] and, thus, this
last assumption is relaxed.

The update step in implementation of the PHD filter through
the GM-PHD is as follows:

µi
t(y) = µ̂i

◦,t(y) +
∑
z∈Zi

t

Li
t(z|y)µ̂i

•,t(y)

λici(z) +
∫
X µ̂

i
•,t(y

′)dy′
, (6)
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where µ̂i
◦,t(·) and µ̂i

•,t(·) represent the missed detection and
associated terms, respectively. Both terms can be expressed as
follows:

µ̂i
◦,t(y) =

N∑
k=1

(1− piD(y))ωkN (y, ŷik, Q̂
i
k), (7)

µ̂i
•,t(y) =

N∑
k=1

piD(y)ωkN (y, ŷik, Q̂
i
k). (8)

E. The parent process: the particle filter

We have seen how to perform multi-object filtering if the
states of the camera are given in advance. However, their ex-
trinsic and intrinsic parameters might, in fact, not be provided
as inputs and, thus, the idea behind the parent process of the
framework is to determine them along with the multi-object
estimation. This task is difficult to address due to the number
of intrinsic and extrinsic parameters to be determined in the
problem. One way to deal with this problem, for instance, is
to assume that the world coordinate system is the one of the
left camera and, hence, the framework requires calculating up
to 16 values for the state of the right camera.

Formally, the problem consists in finding the joint proba-
bility distribution Pi

t describing the state of the right camera
s ∈ Sr as well as the state of the objects of interest Y [12]:

Pi
t(Y, s) = P i

t (Y |s)pt(s), (9)

where pt(·) is the probability distribution over Sr at time-step
t.

As we have discussed in previous sections, the multi-object
density is computationally hard to process directly and, thus,
its first-order moment statistic is used. The derivation of the
first-order moment density differs from the usual PHD filter
expressions since, now, the multi-object density is conditioned
on the state of the right camera. The corresponding expression
following the arguments in [23] is

µi
t(y, s) = µi

t(y|s)αt(s)pt(s), (10)

where µi
t(Y |s) comes from the daughter process conditioned

on s and αt(s) ∈ [0, 1], expressed as

αt(s) =
Lc
t(Z

i
t |s)∫

Lc
t(Z

i
t |s′)pt(s′)ds′

, (11)

represents the probability that s generates correct multi-object
update. In the previous expression, Li

t(Z
i
t |s) is the likelihood

of the observations given the state s, defined as below:

Lc
t(Z

i
t |s) = exp

(
−λ(s)−

∫
µi
•,t(y|s)dy

)
·
∏
z∈Zi

t

[
λ(s)c(z|s) +

∫
Li
t(z|y, s)µi

•,t(y|s)dy
]
.

(12)

If the probability distribution pt is approached through a set
of Mt particles {sk}Mt

k=1, i.e.

pt(s) =

Mt∑
k=1

ωkδsk(s), (13)

δsk(s) =

{
1 if s = sk

0 otherwise,
(14)

then, the expression for the first-moment density µi
t is approx-

imated as follows:

µi
t(y, s) ≈

Mt∑
k=1

µi
t(y|sk)αt(sk)ωkδsk(s). (15)

Therefore, each particle of the parent process is propagated
using the conditioned GM-PHD filter of the daughter process.

III. INTRODUCING VARIANCE ON THE FRAMEWORK

The variance in the number of targets observed in the
scene can give information regarding the reliability of the
measurements coming from the sensing system [15]. This
knowledge could be strategically used for determining whether
the current configuration of the right camera is correct or not.

In the following sections, we described how the variance is
plugged into the framework, i.e. the parent and the daughter
processes.

A. Variance in the parent process

The overall variance in the number of targets in the scene
could be calculated based on different approaches. For in-
stance, in this particular case, we consider (i) the variance
information on the most likely particle, and (ii) the expectation
of the variance with respect to the information of all the
particles. The two approaches for addressing the variance in
the framework are analysed in the experimentation section.

B. Variance in the daughter process

As we described previously, the PHD filter propagates only
first-order moments. However, the variance of the updated
target process of the camera Ci with the set of measurements
Zi
t can be calculated at a given time-step t by considering

the regional variance approach presented in [15]. Then, the
variance on a region B ⊆ X is expressed as

Varit(B|Zi
t) =

∫
B

µ̂i
◦,t(y)dy

+
∑
z∈Zi

t

∫
B
Li
t(z|y)µ̂i

•,t(y)dy

λici(z) +
∫
X L

i
t(z|y)µ̂i

•,t(y)dy

·

(
1−

∫
B
Li
t(z|y)µ̂i

•,t(y)dy

λici(z) +
∫
X L

i
t(z|y)µ̂i

•,t(y)dy

)
.

(16)

In this particular case, we are not interested in computing the
variance on a specific region, but on the whole state space X .
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IV. IMPLEMENTATION

In the previous sections, we describe how multi-object
filtering works with the GM-PHD filter. In this section, we
describe the strategy for implementing the data update and
obtaining statistics information. The pseudo-code is presented
in Algorithm 1. Note that we followed a similar notation to
the one used in [14].

Algorithm 1: Data update on the PHD filter and informa-
tion statistics

Data: Mixture information {ωk, ŷ
i
k, Q̂

i
k}Nk=1, states

Y = {y1, y2, ..., yN} and new measurements Zi
t

Result: Expectation and variance in number of targets
µ(X ) and Var(X|Zi

t), respectively
/* Missed and associated terms

computation */
for k = 1 to N do

// Computing missed detections
ω◦k ← (1− piD(yk))ωkN (yk, ŷ

i
k, Q̂

i
k);

// Computing associated terms
foreach zj ∈ Zi

t do
ω̂•k,zj ← piD(yk)L

i
t(zj|y)ωkN (yk, ŷ

i
k, Q̂

i
k);

/* Update step */
for k = 1 to N do

// Normalising measurement weights
foreach zj ∈ Zi

t do
ω•k,zj ← ω̂•k,zj/

(∑
k′ ω̂•k′,zj

+ λici(zj)
)

;

// Updating weights
ωk ← ω◦k +

∑
zj∈Zi

t
ω•k,zj ;

/* Statistics calculation */

// Expectation in number of targets
µ(X|Zi

t)←
∑

k ωk;
// Variance in number of targets

ω•zj ←
[∑

k ω̂
•
k,zj

]
/
[∑

k ω̂
•
k,zj

+ λici(zj)
]
;

Var(X|Zi
t)←

∑
k ω
◦
k +

∑
zj∈Zi

t
ω•zj ;

V. RESULTS ON SIMULATED AND REAL DATA

The proposed approach was evaluated on a simulated sce-
nario when considering different amounts of particles on the
parent process. The obtained results were used to guide the
decision of how many particles to use on the GM-PHD filter
when running the trials on real data.

A. Experiments on simulated data

Generating simulated data following a specific scenario
setup, i.e. the ground truth, was essential to validate the
proposal. The camera pair was symmetrically located with
respect to the reference frame; the left camera Cl was at
(−20, 0, 0) and rotated π/12 with respect to the y axis, while
the right camera Cr was at (20, 0, 0) and rotated −π/12

around the y axis. Then, a total of seven targets moving at
constant velocity were introduced in the scene in specific
time-steps: (i) 2 targets were in the scene from the beginning
of the experiment, (ii) other two entered the scene at time-
steps 20 and 35, respectively, (iii) other two targets were
simultaneously introduced at time-step 70 and, (iv) finally, the
seventh target joined the scene at time-step 120. During the
experiment, three of the targets got out of the FoV of the
cameras at time-steps 123, 229 and 324, in that order. The
total number of targets at each time-step is indicated in Fig. 4
with a green line.

By knowing the scenario setup as well as the position of
the targets in the 3D space, the corresponding projections
on the image plane of each camera were computed. Before
processing such information with the proposed extension of
the camera calibration framework of Houssineau et al. [12],
its parametrisation was carried out: the probability of detection
piD was set to 0.95, the merging distance was 7, the pruning
threshold was equal to 10−6, and the false alarm Poisson
parameter was set to λi = 1. As reported in Fig. 4, not only
the variance of the expected number of targets in the scene was
computed with the two approaches introduced in Section II and
Section III, but also with three different amount of particles:
250, 500 and 1500. Each of those experiments was executed
once.

From the results presented in Fig. 4, it can be seen that
the performance of the proposed approach is directly related
to the existing number of particles in the parent process.
When considering more particles and indifferently from the
followed approach to compute the statistics, the estimated
number of targets on the scene represents the reality better,
i.e. the estimation is closer to the ground truth. Despite the
statistics being more stable when increasing the number of
particles, it leads to a slower convergence of the expectation
to the real value.

Comparing the two approaches for computing the statistics,
it can be clearly spotted out that considering the information of
one particle gives more stable results and faster convergence
than computing the weighted-average of the information of all
the particles. Additionally, further experiments have demon-
strated that the performance of the weighted-average approach
plummets when the particles are not resampled properly.

Regarding the variance of the estimated number of targets
in the scene, it has been seen that it slightly increases when (a)
the number of tracked targets grows, (b) a new target appears
in the scene or (c) a target goes out of the FoV of the cameras.
The former fact can be spotted in any of the illustration in
Fig. 4 by comparing the width of the shadowed area when a
different number of targets are estimated. The two last points
cause small sudden spikes in the variance, which are not
noticeable in the figures due to its reduced size. A quantitative
analysis of the obtained results also indicates that the variance
is a bit lower when the statistics are computed with the most
likely particle. However, non-consistent conclusions could be
drawn regarding the behaviour of the variance when increasing
the number of particles.



6

0 50 100 150 200 250 300 350
Frame number

0

1

2

3

4

5

6

7

8

9

E
xp

ec
te

d 
nu

m
be

r 
of

 ta
rg

et
s

(a)

0 50 100 150 200 250 300 350
Frame number

0

1

2

3

4

5

6

7

8

9

E
xp

ec
te

d 
nu

m
be

r 
of

 ta
rg

et
s

(b)

0 50 100 150 200 250 300 350
Frame number

0

1

2

3

4

5

6

7

8

9

E
xp

ec
te

d 
nu

m
be

r 
of

 ta
rg

et
s

(c)

0 50 100 150 200 250 300 350
Frame number

0

1

2

3

4

5

6

7

8

9

E
xp

ec
te

d 
nu

m
be

r 
of

 ta
rg

et
s

(d)

0 50 100 150 200 250 300 350
Frame number

0

1

2

3

4

5

6

7

8

9
E

xp
ec

te
d 

nu
m

be
r 

of
 ta

rg
et

s

(e)

0 50 100 150 200 250 300 350
Frame number

0

1

2

3

4

5

6

7

8

9

E
xp

ec
te

d 
nu

m
be

r 
of

 ta
rg

et
s

(f)

Fig. 4. Real number of targets in the scene (green line), and obtained expectation (red line) and 2−σ confidence level (shadowed area), where σ corresponds
to the standard deviation in the number of targets in the scene at each time-step. First row, statistics when considering the information of the particle with
the highest weight. Second row, statistics when considering the weighted average of the information of all the particles. From the column on the left to the
one on the right, obtained results when using 250, 500 and 1500, respectively.

B. Experiments on real data

The evaluation of the proposal on real data was performed
using the dataset gathered by Houssineau et al [12]. The
objects of interest in this dataset are paper planes, which
sustain their flight for some time after they are launched. Each
of those planes is observed by the pair of cameras as shown in
Fig. 5; Fig. 5a and 5b correspond to the time-step 190, where
only one plane is in the scene, and Fig. 5c and 5d depict three
targets at time-step 240.

For this experiment, the parametrisation of the GM-PHD
is similar to the one considered in Section V-A, i.e. the
probability of detection piD was equal to 0.95, the merging
distance was set to 7, the pruning threshold was 10−6 and
the false alarm Poisson parameter was equal to λi = 1. The
number of used particles was set to 1500 accordingly to the
intuition given in Section V-A.

Two different approaches for computing the mean and vari-
ance in the expected number of targets in the scene have been
introduced in Section II and Section III. When only the particle
with the highest likelihood is considered for determining the
statistics, the obtained results look like in Fig. 6. On the other
hand, if the information of all the particles is weighted by its
likelihood and then averaged, the obtained statistics are shown
in Fig. 7. In both cases, the estimated number of targets at
time-steps 190 and 250 agree with the visual ground truth
provided in Fig. 5.

(a) (b)

(c) (d)

Fig. 5. Estimated target mean and variance (green crosses and ellipses,
respectively) and observations (red crosses). First row: frame 190. Second
row: frame 240. Left and right columns, left and right view, respectively.



7

0 50 100 150 200 250 300 350
Frame number

0

1

2

3

4

5

6

7

8

9

10

E
xp

ec
te

d 
nu

m
be

r 
of

 ta
rg

et
s

Fig. 6. Expected number of targets when considering the information of the
most likely particle.
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Fig. 7. Expected number of targets when considering the weighted average
of the information of all the particles.

The obtained results support the conclusions stated in Sec-
tion V-A; averaging the information of all the particles, instead
of considering only the information of the most likely particle,
increases the response time. For instance, this fact is reflected
in time-step 75, where no targets are estimated when using the
former method in contrast to the two estimated targets when
considering the latter approach.

VI. FINAL REMARKS

In this paper, an approach for estimating the variance in
the number of targets on a framework performing camera
calibration from multi-object triangulation and tracking is
presented.

The proposed approach was evaluated on real and simulated
scenarios. It was observed that the more the number of
particles in the parent process, the better the approximation of
the number of targets and the slower the convergence to the
expected value. The variance did not exhibit a strict behaviour
regarding the number of particles, but with the number of
targets on the FoV of the sensing system.

Extensions of this work will contemplate weighting the
particles in the parent process not only from the current
measurement model, but also from the variations in the number
of targets.
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