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Abstract— Path planning has been one of the most researched
topics in the field of Robotics. Despite several algorithms are
development every year, no absolute solution has been reached
for this problem since all the approaches are subjected to a
wide number of restrictions not only given by the scenario
but also by the capabilities of the robots. In this paper, several
remarkable algorithms within the state-of-the-art are evaluated
using a designed benchmarking to recognise their strengths and
weaknesses. The dominating approach is then embedded into
a C-FOREST framework to test it in a high-level controller in
order to obtain a solution of the proposed simulated and real-
life environments. Furthermore, and for the sake of security
of the device, a safety box around the robot was considered.
The results showed that the RRT* outperforms in the set
of measures defined for the assessment in comparison to the
other selected algorithms. Also, a better performance of the
same algorithm was observed when considering the C-FOREST
technique. Finally, it was observed that the proposed approach
was able to find an acceptable solution to simulated and real-life
environments in real-time.

I. INTRODUCTION

Through the years, the area of robotics has been providing
incredible technological developments. So much so that
we can talk nowadays not only about robots performing
housework [1], [2], but also critical tasks, such as help-
ing in disasters [3], [4] and assisting surgeons in delicate
procedures [5], [6]. Regardless the task the robot has to
accomplish, all of them rely on one of the most important
topics in the field: motion planning [7]. Planning the motion
of a robot consists in finding the best series of movements
driving the robot from a starting state onto the given target
while taking into account the constraints of the scenario in
which it has been placed as well as its own.

The evolution has made humans very skilful in planning
the motion since they had to detect, classify and recognise
different environmental features under a variety of conditions
and distortions to be able to find food and also to avoid
dangerous predators. Then, the question rising in Robotics
and Computer Science is: how can this knowledge be placed
into a computer such that it is able to handle the environment
in the same way as we do? In other words, the challenge itself
is to build autonomous robots.

Under this perspective, a robot should be able to sense
the environment, update its internal map [8] to recognise
the features in future moments and, at the same time, to
avoid dangerous situations, such as collisions and unsafe
conditions due to the economical loss that damages on the
device may represent. However, since all these tasks are
limited by the perceptual capabilities of the sensors of the
robot and the representation it has of the environment, up

to date, there is no truly elegant solution for the navigation
problem. The best approach, so far, is to combine relative
and absolute position measurements to achieve the best
localisation. The first kind of measurements include, among
others, the odometry and the inertial navigation; while the
absolute position measurements include magnetic compasses,
sensors and matching models.

Throughout this paper we propose an off-line high-level
controller that handles the navigation of the mobile robot
Turtlebot [9] in a two-dimensional environment with obsta-
cles. The document is structured as follows: in Section II
a review of the state-of-the-art about some path planning
algorithms is presented. According to this analysis, the pro-
posed high-level controller is introduced in Section III, while
an overview of the implementation is given in Section IV.
Then, the evaluation environments are defined in Section V
and the implementation is tested in Section VI. Finally, some
final remarks are stated in Section VII.

II. STATE-OF-THE-ART

Many path planning algorithms have been developed dur-
ing the last decades. The most well-known approaches are
based on solving low dimensional problems using grid-based
techniques [10] which consists in overlaying a grid on top
of the configuration space to compute the shape and the
connectivity of the free space.

Some researchers have proposed to address the problem
as an optimisation of a potential function in which the
robot takes into account the distance to the goal and the
proximity with respect to the obstacle. But these approaches
are computationally expensive when the problem involves
several degrees of freedom and constraints. In fact, exact
motion planning for high dimensional systems remains com-
putationally intractable [10].

One way to get along with this situation is to reduce the
complexity of the problem by smartly choosing few samples
from the free configuration space without losing complete-
ness in the process. These methods, called sampling-based
algorithms, solve the system quite quickly and avoid the
problem of local minima. For these reasons, they are cur-
rently considered state-of-the-art for path planning in high-
dimensional spaces.

Sampling-based algorithms are used either for online or
offline planning in combination with other methods. These
last ones only consider the geometric and kinematic con-
straints of the environment, assuming that every path can
be a possible trajectory [11]. Two groups can be identified
within the literature regarding the number of queries they



are oriented to solve: single-query or multi-query planners.
On one hand, the approach of the single-query planners is
to build one or two trees and connect the different nodes
as the process goes. Algorithms such as the well-known
RRT* [12] –an optimal version of RRT which converges
to an optimal path as a function of time–, TRRT [13] –the
fusion of RRT and a stochastic optimising mechanism to bias
the process towards a low-cost region in the configuration
space–, and LBTRRT –a near-optimality version of RRT
guaranteeing to converge to a solution within a factor of
the optimal solution– fall into this category. On the other
hand, multi-query planners are specialised in building a map
such that it can be used to perform several queries. Usually,
extensions of the PRM algorithm belong to this group, such
as LazyPRM* [14] –in which vertices and edges are checked
only if they are part of the candidate solution–, PRM* [12]
–which considers a gradual increase of connection attempts
as the roadmap grows–, SPARS [15] –an asymptotic near-
optimality algorithm which selects the best candidate in a
search window around the current node instead of taking the
closest neighbour and prunes the graph in each iteration–,
and SPARS2 –a variant of SPARS using a slightly different
approach to compute the shortest path.

Path planning is not an isolated field from the general
problems faced in computer science. Because of that, the
literature proposes the integration of many generic algo-
rithms to this field, such as heuristics algorithms [16],
multi-threading approaches [17] or machine learning tech-
niques [18]. Depending on the requirements to be covered,
a combination of these approaches might be considered.

III. PROPOSED APPROACH

A well-known technique exploiting the power of concur-
rency available in nowadays’ computers is presented in the
C-FOREST framework. This technique considers feedback
between different path planning algorithms which run at the
same time each of them in a different CPU. The feedback
takes place every time a path from the starting position to
the goal is found for one of the methods. The approach
consists in sending the solution to the other nodes via
message passing so that it can be grafted. This is beneficial
since all the trees expand into a valuable area known by
at least one tree, and all the trees focus on their search
by avoiding regions of the configuration space that cannot
produce a globally better solution. Note that this is a greedy
strategy, since it does not account for the fact that future tree
remodelling may decrease.

The proposed approach for this work is to implement the
different algorithms introduced in Section II and build a
scientific comparison on their performance. In addition, the
most suitable path planning algorithm is then embedded into
a C-FOREST framework in order to enhance its performance
for the two-dimensional offline problem on a Turtlebot.

IV. IMPLEMENTATION

The approach proposed in Section III has been fully
implemented in this section. First, the requirements derived

from the proposal are presented in Section IV-A. Then,
in Section IV-B, the strategy taken to perform a reliable
benchmarking of the different considered path planning
algorithms is explained. Finally, the architecture designed to
test the proposal in a two-dimensional path planning problem
is detailed in Section IV-C.

A. Implementation requirements

For the implementation of the proposed approach sev-
eral tools have been integrated, such as: Robot Operating
System (ROS) [19] –which is an OS specifically designed
for the development of robotic applications–, Turtlebot [9]
in Gazebo [20] –which allows us to simulate a robot
in a given environment–, the Open Motion Planning Li-
brary [11] (OMPL) –a package containing many state-of-
the-art sampling-based motion planning algorithms in C++–
and RViz [21] and Open source Computer Vision [22]
(OpenCV) –for visualization purposes. The first two elements
are required by the project statement while the remaining
ones are considered for improving the robustness and user-
friendly aspects of the application.

Additional functionalities have been programmed in C++
and Python not only to integrate all these tools under the
same framework, but also to provide the path planning
algorithm with a collision checking strategy, which is not
initially given by the OMPL.

B. Algorithms benchmarking

Several evaluation processes can be found within the
literature, but none of them have been universally adopted
in the path planning area. In this particular case, the OMPL
benchmarking framework, introduced in Fig. 1, has been
considered. This assessment process allows us to easily
solve a motion planning problem repeatedly with different
approaches, e.g. planners, samplers, or parametrisation of the
algorithms. By taking advantage of this toolbox, an extensive
comparison of the introduced PRM*, Lazy PRM*, SPARS,
SPARS2, RRT*, T-RRT and LBTRRT algorithms is done.

The benchmarking is fourfold. First, an instance of the
OMPL benchmarking class is initialised, in which a path
planning problem has to be set up. Second, the algorithms,
as well as the evaluation measures, are indicated to the
framework. At this point, some constraints can be imposed

Fig. 1: OMPL benchmarking framework.



architecture_config	  .yaml	  

map.pgm	   map_config	  .yaml	  

map_server	  

path_planner	  

/build_mission_from_path	  

path	  .txt	  

misison_planner	  

/execute_mission	  

mission	  .txt	  

pilot	  

/odom	   /cmd_vel/input/teleop	  

/map	  

/map_metadata	  

RViz	  

Turtlebot	  /	  Gazebo	  

Fig. 2: ROS architecture designed to perform offline path
planning in a Turtlebot.

to the path planner algorithm, such as the number of runs,
the maximum solving time and the maximum memory usage.
Third, the process is carried out and the resulting informa-
tion, which is contained in a .log file, is extracted to a SQLite
database through the ompl benchmark statistics.py Python
code provided by the same OMPL. Finally, the parsed data
in the database can be plotted using either the same Python
code or via the Planner Arena [23], which allows the user
to navigate through a wide range of plots.

C. ROS architecture

A ROS architecture has been designed and implemented to
fulfil all the previously commented requirements. As it can
be observed in Fig. 2, such framework is based on four ROS
nodes: the map server, the path planner, the mission planner
and the pilot, which are described below. Additionally, it uses
the RViz visualiser and the robot, either the real one or the
one in the Gazebo simulator.

• The map server reads the .pgm image which defines
the environment. Considering the parametrisation in the
.yaml configuration file, i.e. origin of the map, its ori-
entation and desired resolution, it builds an occupancy
grid map. This sampled map is published to the ROS
map server to make it available for the other nodes in
the ROS architecture.

• The path planner wraps the map in the ROS map
server and all the configuration variables specified by

the user to set up the path planning problem in the
OMPL framework. If the planner finds a solution, the
node stores its states in a text file, which at this level of
the architecture is defined by the number of cells with
respect to the origin frame of the occupancy grid map.

• The mission planner transforms the resulting path to
the robot frame in metric units. This transformation also
considers directing the heading of the robot, at each
state, towards the next one. Thus, each intermediate
goal is described by a triplet (x, y, θ). The computed
mission is displayed and executed only under the user’s
agreement.

• The pilot reads the setpoints proposed by the mission
planner node to drive the Turtlebot through the envi-
ronment. The navigation system of the Turtlebot relies
on the odometry while its control system is based on
one proportional controller for each of the two Degrees
Of Freedom (DOF) of the vehicle. Both controllers are
synchronised in a way such that the heading always
prevails to the linear motion. Under this perspective,
the head of the robot is fixed towards the goal before
moving straight to it.

This architecture is executed through a unique launch file
according to the parametrisation given in the configuration
document. This strategy provides dynamism to the different
nodes of the framework. The following parameters can be
modified without compiling the full architecture:

• Simulation: is a boolean flag indicating whether the
architecture will work with the simulated Turtlebot in
Gazebo or the real robot.

• Start and goal positions: which are given in pixel
coordinates with respect to the top-left corner of the
occupancy grid map.

• Time: is the maximum time allowed to look for a
solution of the path planning query.

• Safety box: which is the minimum distance that the
robot should keep with respect to any obstacle.

• Linear and angular controllers: which are all the pa-
rameters in charge of the linear and angular movement
related to the controller.

The overall architecture has been designed to be consis-
tent; it will only start up if the nodes of the framework and its
configuration parameters are properly initialised. Otherwise,
an error message will be displayed on the terminal to help
the user identify the issue.

V. EVALUATION ELEMENTS

In this section are presented the elements used to evaluate
each part of the proposal. The set up of the theoretical
benchmarking is detailed in Section V-A while the evaluation
of the architecture, both in simulated and real scenarios, is
respectively introduced in Section V-B and Section V-C.

A. Algorithms benchmarking

To decide which algorithm was the most suitable to solve
the two-dimensional path planning problem, the following
aspects were considered into the benchmarking:



Fig. 3: Path planning problem for benchmarking the planners
and simulating trials.

• Cost: the cost of a path can be determined through
different metrics. Our proposal treats the cost as the
length of the path. In this way, the shorter the path, the
lower the cost.

• Memory: depending on the device in which an algo-
rithm is run, the amount of memory can represent an
important constraint.

• Segments: which are the edges connecting the different
states in the final path. The segments are directly related
to the smoothness of the path, i.e. the higher the number
of segments, the smoother the path.

• Smoothness: since the system relies on odometry mea-
sures, smoother paths are preferred to avoid problems
when reading the data from the robot actuators.

A path planning problem has to be set up in order to
use the OMPL benchmarking framework. In this case, the
considered environment is illustrated in Fig. 3 where the
start position and the goal are represented with a red and
green cross, respectively. The solution for this scenario was
computed ten times per algorithm in order to reduce the
randomness associated with the sampling-based path plan-
ning techniques. Moreover, since any asymptotically optimal
and nearly-optimal algorithm would take as much time as
allowed, the maximum time to solve the query was fixed to
20 seconds and the maximum usage of memory was limited
to 300 MB.

B. ROS architecture in a simulated scenario

Many experiments were performed in simulation to val-
idate the different nodes of the framework. At the end, a
concluding trial was designed to validate the functionality of
the full architecture. The objective of this test consisted in
moving the Turtlebot through the Willow Garage environ-
ment of the Gazebo simulator introduced in Fig. 3.

The occupancy grid map of the considered environment
was extracted using the collision map creator plugin [24]
of Gazebo. This map corresponds to a binary image of
the region obtained by defining the area of interest and its
resolution. In this particular case, a square with borders of
20 metres length centred at the origin of the Gazebo frame

was contemplated. With this parametrisation and using a
resolution of ten centimetres, the dimension of the resulting
map was of 2000× 2000 cells. Due to the narrow corridors,
a safety box of 0.6 metres was to be defined.

C. ROS architecture in a real scenario

For testing the ROS architecture under real conditions, a
challenging experiment in the P-II building of the Polytech-
nic school of the University of Girona was designed. The
purpose of this scenario consisted in autonomously driving
the robot from the red cross to the green one as presented
in Fig. 4. The environment was converted to an occupancy
grid map using a resolution of ten centimetres resulting in a
map of 5430× 8725 cells.

Fig. 4: Path planning problem for the real experiments with
the Turtlebot.

To achieve the goal position located in the main hall of the
building, the robot had to go through a narrow corridor of
approximately two metres. Therefore, when performing the
real experiments, a safety box of 1.5 metres was considered.
It can be seen that the experiment was difficult since not only
the computed path had to be extremely accurate, but also the
pre-processed occupancy map.

VI. RESULTS

In this section, the results of the proposed evaluation
framework are presented. The outcomes of the benchmark-
ing, the simulated and the real experiments are presented in
Section VI-A, VI-B, VI-C, respectively.

A. Algorithms benchmarking

The obtained results regarding length, smoothness, number
of segments and memory consumption are shown in Fig. 5.
It is important to have in mind that the results of SPARS
and SPARS2 are gathered from less number of trials since
they were not able to find a solution within 20 seconds in
the 60% and 10% of the cases, respectively.

In Fig. 5 (a), the results in terms of length of the final path
are evidenced. It can be seen that the shortest path with the
smallest variability is found by RRT*.

In Fig. 5 (b), the smoothness of the solutions are shown.
It can be observed that multi-query planners are able to find
smoother solutions compared to the single-query planners.
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Fig. 5: Benchmarking of optimal and nearly-optimal sampling-based path planning algorithms in the state-of-the-art: (a)
length, (b) smoothness, (c) segments, (d) memory.

Unlike in the previous charts, Fig. 5 (c) and (d), the two
groups of techniques are distinguishable since the PRM-
based approaches achieve better results than the others with
the lower variability in terms of Inter-Quartile Range. Fur-
thermore, their memory consumption is around the half of
the single-query algorithms.

In general, multi-query algorithms provide better results
in terms of the considered evaluation elements. However, the
shortest path is found by RRT* since it is able to explore the
map more than the other algorithms within the same amount
of time.

The RRT* demonstrated to be the most suitable planner
since it provides the most optimal solution with a reasonable
smoothness and usage of memory. Therefore, we decided

RRT* C-FOREST

Cost 2831 2825

Smoothness 0.0122 0.0043

Segments 106 58

Memory [MB] 93 145

TABLE I: Quantitative comparison of the C-FOREST RRT*-
based with the conventional RRT* algorithm.

to use it as the base of the C-FOREST algorithm to get
a planner with a better performance. Tab. I quantitatively
summarises the advantages and drawbacks of the proposal.

The C-FOREST RRT*-based not only reduces the cost
of the path, but also the number of segments. Moreover,
the smoothness of the path is dramatically enhanced, which
is completely beneficial to avoid problems with odometry-
based navigation systems. Even though, more memory is

Fig. 6: Proposed path through the simulated environment.



required, such amount can be nowadays afforded by any
robot.

B. ROS architecture in a simulated scenario

The path found when dealing with the environment of the
Willow Garage of the Gazebo simulator is shown in Fig. 6.
As it can be seen, the path preserves the safety distance to
all the obstacles. After the mission was accepted under the
user’s agreement, the Turtlebot was able to reach the goal
following the computed path.

C. ROS architecture in a real scenario

The proposed solution of the implemented high-level
controller when dealing with the P-II building is presented
in Fig. 7. As illustrated in the plot, a successful path was
found from the start to the goal position, preserving the
configured safety distance. After accepting such mission, the
robot performed the whole trajectory in the same way it was
planned in approximately five minutes.

Fig. 7: Proposed path through the real environment

VII. FINAL REMARKS

In this paper, an efficient algorithm for solving a two-
dimensional offline path planning problem has been pro-
posed, implemented and integrated using an ad hoc ROS
architecture. This approach has been tested under simulated
and real scenarios.

Among the considered algorithms, RRT* is the most
convenient planner to solve the challenges presented in the
extensive benchmarking. As a consequence, it was embedded
into a C-FOREST framework to enhance its performance.
The obtained results not only states its optimality, but also
it provides one of the shortest and smoothest paths that can
be achieved with any sample-based algorithms in the state-
of-the-art.

Some work has been left for further studies. For instance, it
could be interesting to investigate if different path planning
algorithms can be used in a similar framework as the C-
FOREST to take advantage of their corresponding strengths.
Moreover, the control system of the implemented framework
could be improved by considering a PID controller, with
which a smoother path could be achieved.
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